Mikrocontroller(641)

Audio(325)

W83795ADG

  • Ausbildung  Tool  Lernen  Uhrzeit - 5:15
    #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 2:49
    #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 4:53
    #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 1:8
    Hello I’m AE Sam at Nuvoton, today we are going to introduce HW design guide of crystal. Crystal is an ultra-low-power oscillator, easily affected by noise, there are five major tips for improving oscillator stability. First, the crystal should be mounted as close as possible to the microcontroller. Second, short oscillator paths & less test point. Third, symmetry between crystal capacitances. Fourth, A guard ring ground around the oscillator path Finally, any high-frequency path should be routed away from the crystal paths and components. That's all for the brief introduction about hardware design guide of crystal, if you need more information, you can contact us, thank you, bye ~ #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 3:19
    This video introduces how to download and install Arm Keil, and its content includes how to use Nuvoton's product serial number to apply for an Arm Keil product serial number and how to receive a product serial number that can be used in the activation step. Help you to install and use Arm Keil easily, and through Nuvoton's product serial number, free (M0 series) or half price (M23, M4 series) use Arm Keil product serial number. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 2:17
    #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 5:3
    #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 2:47
    #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 2:21
    Hello everyone! I am Chris, the Field Application Engineer from Nuvoton Technology. Today, I will introduce how to run a simple sample code on NuMicro M251/M252 series microcontroller. First, we connect the M251/M252 NuMaker development Board to the computer. Then click the M251/M252 BSP folder, click the Sample Code folder, template folder, Keil folder, and finally open the Template project file. What we are going to do is running a simple GPIO Toggle LED Sample Code. Introduce the main program briefly. First, set GPIO PB14 to Output Mode. After writing a small loop, set PB14 to reverse. Finally, set CLK_SysTickDelay to 300,000 microseconds (uSec). Before Rebuild, we must add the GPIO Source Code to the Library, find the corresponding Source Code and load it, and press Rebuild after it is complete. After the Rebuild, press Load and program the Code into the IC. When programing is over, press the reset button on the development board to confirm whether the LED lights are flashing on the board. That’s all for the tutorial of running sample code. Thank you for watching it. If you want to know more information, please feel free to contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Produkte  Lernen  Uhrzeit - 14:8
    For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com #Product #Learning #Basic #en 0:00 簡介 0:29 Nuvoton Low Power Microcontroller Family 1:24 NuMicro M251 Series Overview 3:31 M251 & M252 Low Power Series 4:08 M251 Series Remarkable Features 7:14 M251/M252 Power Mode 9:37 I NuMicro MCU Applications 12:09 Development Tools
  • Ausbildung  Tool  Lernen  Uhrzeit - 4:26
    Hello everyone, I am Chris, the field application engineer from Nuvoton Technology. Today I will introduce the power modes of the M251/M252 series microcontroller. The M251/M252 series has multiple power modes. The differentiation is based on power consumption, wake-up time, the operable CPU, and peripherals. In normal mode, the CPU is running normally. In Idle mode, only the CPU clock is disabled while other peripherals work as usual. Normal mode and idle mode can be divided into high-efficiency high-speed PL0 mode and low-power low-speed PL3 mode according to CPU operating speed. We should note that in the low-speed PL3 mode, only the clock source of the CPU and peripherals is 32.768 or 38.4 kHz can run. In power-down mode, there are three types according to power consumption. The first is NPD (Normal Power Down Mode). The CPU and high-speed peripherals stop running, and only the low-speed peripherals can work normally. The second is FWPD (Fast Wake Up Power Down Mode), which is the fastest wake-up of the three power-down modes but consumes more power. The third is DPD (Deep Power Down Mode), which consumes the lowest power among the three power-down modes, but the data in the RAM cannot be retained, and the wake-up speed is the slowest. Specific peripherals or pins can only activate the wake-up. For power consumption and wake-up time, we list the corresponding data. Users can choose the most suitable power mode according to the required power consumption and wake-up time. We need to note that FWPD mode will consume more power in the power-down mode because this mode wakes up the fastest. The DPD mode is the least power consumption, but the longest wake-up time., Also, normal mode is a normal working mode, so there is no need to wake up. The time unit of the idle mode is different from the power-down mode, which is five cycles. The length of a cycle is determined according to the operating frequency used by the system. In the related resources section, we provide application notes for power management, which have more detailed operations and descriptions. If you want to know more, please download it from the URL in the video. There are also various power mode entry and wake-up methods in the BSP package; you can also refer to and use it. That’s all for the power modes introduction. Thank you for watching it. Please subscribe to our channel for more video resources. If you want to know more information, please contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
  • Ausbildung  Tool  Lernen  Uhrzeit - 5:40
    Hello, everyone! I'm Chris, Field Application Engineer from Nuvoton Technology. Today, I will introduce you how to design NuMicro M251/ M252 application circuit. Let's start with the power application circuit of M251/M252. The external power should add 10uF and 0.1uF decoupling capacitors, and the capacitor should be placed close to the source of the external power supply. Before the external power enters the VDD/VDDIO/VBAT of the IC, 0.1uF bypass capacitors should be added separately, and the capacitors should be placed close to the IC. Before the external power enters the AVDD, the bead should be connected in series for filtering, and then 1uF, 0.1uF, and 0.01uF bypass capacitors should be added. The bead and capacitors should be placed close to the IC. Before connecting AVDD to VREF, first, connect the bead in series for filtering, and then add 2.2uF, 1uF, and 470pF bypass capacitors. The bead and capacitors should be placed close to the IC. A 1uF bypass capacitor should be added to the internal LDO power supply of the IC, and the capacitor should be placed close to the IC. AVSS and VSS should be connected in series with a bead for filtering. USB_VBUS should be connected in series with a 10-ohm resistor to enhance the ability of USB to resist EFT interference. USB_D+ and USB_D- should be connected in series with 27-ohm resistors for impedance matching. USB_VCC33_CAP needs to add a 1uF bypass capacitor. ICE_DAT and ICE_CLK should be connected to 100K ohm pull-up resistors. The two ends of the high-speed and low-speed crystal oscillators should be connected with an equivalent capacitance of 20pF to VSS. I2C_SCL and I2C_SDA should be connected to 4.7K ohm pull-up resistors. nRESET should be connected to a 10K ohm pull-up resistor and a 10 uF capacitor to VSS. The internal LDO power supply of the IC needs to add a 1 uF bypass capacitor, and the capacitor should be placed close to the IC. In addition, reference circuits for EBI, UART, SPI, and Audio are provided. VDD is connected to 4~32 MHz crystal oscillator, POR33, Power On Control, 5V to 1.5V LDO, IO Cell... and other circuits inside the IC. Among them, GPIO PF.4 to PF.6 and PA.0 to PA.5 output, the high level is equal to VDD. Vbus is connected to the USB 1.1 PHY inside the IC. This 1.5V regulator will provide 1.5V for Digital Logic, SRAM, Flash, POR15, LIRC, MIRC, HIRC... and so on. Vbat is connected to internal 1.5V RTC_LDO and provides 1.5V voltage for RTC, 32.768 kHz crystal oscillator, IO Cell PF.6. VDDIO is connected to some IO cell for use, and the output high level of PA.0 to PA.5 is equal to VDDIO. AVDD is connected to the analog circuit inside the IC, and VREF is the reference voltage of the analog circuit. That's all for the hardware design of the NuMicro M251/M252 series instruction. Thank you for watching it. If you have further questions, please contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
This website uses cookies to ensure you get the best experience on our website. Learn more