Suche

Ausgewählte Option

Suchergebnisse

finden 234 items
  • Sortieren
  • Nach Zeit
  • Nach Popularität
Ausbildung  Tool  Lernen  Uhrzeit - 5:9
Hello everyone, I am Chris, the field application engineer from Nuvoton Technology. Today, I will introduce the application and principle of programmable seriel I/O aka PSIO on M251/M252. The programmable serial I/O of NuMicro M251/M252 series can generate arbitrary waveforms and combine them to achieve data transmission and reception of specific serial communication protocols. Of course, standard serial communication can also be achieved, such as UART SPI I2C Usually, it is common to use Timer+GPIO to achieve these specific communication protocols, but it is more complicated and requires frequent CPU intervention. When we use PSIO, this not only simplifies the complexity of the operation but also reduces the burden on the CPU. The saved CPU performance could be distributed in other places. Since all hardware operations do not require software intervention, the timing control is more precise. The principle of PSIO is to use a slot controller to control the pin input and output or determine the state, and it can also control the duration of these states. Each slot controller has eight slots, which can be used as eight settings, and the registers corresponding to each slot can access the data that needs to be input and output, and can also set the time for the current pin to maintain this state. Each slot can reach a checkpoint, usually 1 to 1, 2 to 2, 3 to 3, and so on. Each checkpoint can set the pin status of the corresponding slot within the corresponding time. Next, let’s take a look at a simple output-only example In the initial stage, we first set the state of the pin to be high before SLOT has started, so the output is high Then when the Slot controller receives the start signal, SLOT0 is set to output low level according to the setting of CP0 and waits for the time of SLOT0 to expire. Then SLOT1 is set to output low level according to the setting of CP1 and waits for the time of SLOT1 to expire. And so on, followed by SLOT2 output low level SLOT3 low level SLOT4 high level SLOT5 high level After SLOT5, since SLOT6 is not set, the waveform of the protocol can be completed with only six slots Between the time of the next data transmission, we set the interval low, so the output is low at this time Users can complete different protocols according to these simple operations. In the related resources section, we have provided two PSIO application notes. There are two protocol examples with more detailed operations and descriptions. If you want to know more details about PSIO, please download it from the URL in the video. Several sample codes of different protocols are also provided in BSP. That’s all for this tutorial. Thank you for watching it. Welcome to subscribe to our channel. If you want to know more information, please contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
Ausbildung  Tool  Lernen  Uhrzeit - 5:40
Hello, everyone! I'm Chris, Field Application Engineer from Nuvoton Technology. Today, I will introduce you how to design NuMicro M251/ M252 application circuit. Let's start with the power application circuit of M251/M252. The external power should add 10uF and 0.1uF decoupling capacitors, and the capacitor should be placed close to the source of the external power supply. Before the external power enters the VDD/VDDIO/VBAT of the IC, 0.1uF bypass capacitors should be added separately, and the capacitors should be placed close to the IC. Before the external power enters the AVDD, the bead should be connected in series for filtering, and then 1uF, 0.1uF, and 0.01uF bypass capacitors should be added. The bead and capacitors should be placed close to the IC. Before connecting AVDD to VREF, first, connect the bead in series for filtering, and then add 2.2uF, 1uF, and 470pF bypass capacitors. The bead and capacitors should be placed close to the IC. A 1uF bypass capacitor should be added to the internal LDO power supply of the IC, and the capacitor should be placed close to the IC. AVSS and VSS should be connected in series with a bead for filtering. USB_VBUS should be connected in series with a 10-ohm resistor to enhance the ability of USB to resist EFT interference. USB_D+ and USB_D- should be connected in series with 27-ohm resistors for impedance matching. USB_VCC33_CAP needs to add a 1uF bypass capacitor. ICE_DAT and ICE_CLK should be connected to 100K ohm pull-up resistors. The two ends of the high-speed and low-speed crystal oscillators should be connected with an equivalent capacitance of 20pF to VSS. I2C_SCL and I2C_SDA should be connected to 4.7K ohm pull-up resistors. nRESET should be connected to a 10K ohm pull-up resistor and a 10 uF capacitor to VSS. The internal LDO power supply of the IC needs to add a 1 uF bypass capacitor, and the capacitor should be placed close to the IC. In addition, reference circuits for EBI, UART, SPI, and Audio are provided. VDD is connected to 4~32 MHz crystal oscillator, POR33, Power On Control, 5V to 1.5V LDO, IO Cell... and other circuits inside the IC. Among them, GPIO PF.4 to PF.6 and PA.0 to PA.5 output, the high level is equal to VDD. Vbus is connected to the USB 1.1 PHY inside the IC. This 1.5V regulator will provide 1.5V for Digital Logic, SRAM, Flash, POR15, LIRC, MIRC, HIRC... and so on. Vbat is connected to internal 1.5V RTC_LDO and provides 1.5V voltage for RTC, 32.768 kHz crystal oscillator, IO Cell PF.6. VDDIO is connected to some IO cell for use, and the output high level of PA.0 to PA.5 is equal to VDDIO. AVDD is connected to the analog circuit inside the IC, and VREF is the reference voltage of the analog circuit. That's all for the hardware design of the NuMicro M251/M252 series instruction. Thank you for watching it. If you have further questions, please contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
Uhrzeit - 5:11
Loudspeakers are highly nonlinear and time-variant systems. Signal distortion, heating, aging, climate and other external influences limit the maximum level and the quality of the reproduced sound. This video shows how Nuvoton smart amplifier can greatly improve the speaker performance and the sound quality by offering mechanical & thermal protection, automatic system alignment, active compensation of transducer nonlinearities, and active stabilization of the voice coil rest position based on the Klippel Controlled Sound (KCS) technology.
Ausbildung  Tool  Lernen  Uhrzeit - 3:24
Hello everyone I am Chris, the Field Application Engineer from Nuvoton Technology. Today I will introduce the programming and debugging tool, called NuLink-Gang, and NuLink2-Pro. And I will show you in what kind of situation you can utilize the tools. During system development, Nuvoton provides three IDE interfaces: KEIL, IAR, and NuEclipse for user to develop source code. When programming the Chip, Nuvoton provides ICP programming Tool in PC and the debugger Nu-Link2-Pro for users to perform debugging and programming function. User who uses all of the Nuvoton Nu-Maker boards series can develop through the Nu-Link2-Me debugger and programmer; it’s attached to the board. During the mass-production stage, there are 2 modes for programming the target chip. One is online programming and the other is offline programming. At first, in online programming mode, user can use ICP programming Tool and a Nu-Link2-Pro to program a target chip. Besides, if it needs to program several chips at one times, the Nu-Link Command Tool supports program multiple develop board by several Nu-Link2-Pro. Nu-Link2-Pro also supports drag-and-drop Flash programming. User can intuitively complete the programming action. Nu-Link2-Pro In offline programming mode, user can pre-store the programming file in SPI flash, USB flash drive, or SD card. When user wants to program the target chip, pressing the programming button on Nu-Link2-Pro to complete the programming action. If it needs a large number of ICs to be programming, it recommends using the Nu-Link-Gang programmer. Nu-Link-Gang programmer can perform offline programming on four different chips at a time, significantly increasing the programming efficiency. Besides, Nu-Link-Gang programmer can also use the control bus to connect with an automatic programming machine for automatic programming. In the system upgrade, Nu-Link2-Pro also provides five standard communication interfaces such as SPI, I2C, UART, RS485, and CAN for transmission, which is convenient for users to upgrade the system. That’s all for the introduction of Nuvoton’s programming and debugging tool, NuLink-Gang, and NuLink2-Pro. Thank you for watching it. If you want to know more details, please contact us! Thank you. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
Produkte  Lernen  Uhrzeit - 9:3
Nuvoton announced the latest ML51/ML54/ML56 microcontroller, built-in capacitive touch sensing, LCD driver highly integrated low power platform. Based on 1T 8051 core, running up to 24MHz, the power consumption in normal run mode is 80uA/MHz, lower than 1uA in power down mode the power consumption while power down with LCD on is lower than 20uA. 0:00 intro 0:37 NuMicro 8051 Microcontroller 1:38 ML51/ML54/ML56 Product Portfolio 2:18 ML51/ML54/ML56 Features 3:27 Broad Scalability 4:05 Provide 4 Different Power Modes 4:44 LCD Driver Feature 5:52 Touch Key Features 7:05 Target Applications #Product #Learning #Basic #en #ML51 #ML54 #ML56 #8051 #LowPower #LCD-Driver #HumanMachineInterface #HMI #TouchKey-IC #HomeAppliance #EmbeddedWorld2022 - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/ Contact us: SalesSupport@nuvoton.com
Ausbildung  Tool  Lernen  Uhrzeit - 5:53
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to connect to AWS IoT service using MbedOS on NuMaker-IoT-M487 development board The sample code is on GitHub, the URL is https://github.com/OpenNuvoton/Mbed-to-AWS-IoT To avoid typos, use keyword “OpenNuvoton” to search on google. Find the Nuvoton on GitHub, and click it On the Nuvoton GitHub page, use AWS as keyword to search the sample code: Mbed-to-AWS-IoT Right click to copy the URL for later use. Then enter the URL https://ide.mbed.com After log in, make sure the NuMaker-IoT-M487 board has selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS”. There is detailed description of how to add a board. Click the “Import” on the left of menu bar. In the “Import Wizard”, click “Click here” Please paste or key in the sample code URL to “Source URL:”, Select Import as “Program” Click “Import Name”, the project name “Mbed-to-AWS-IoT” will be filled automatically. Then click “Import”. After sample code imported, click “mbed_app.json” to open it. To use Wi-Fi, you have to configure SSID and password to match your Wi-Fi AP setting. In NuMaker_IOT_M487 session of mbed_app.json file, find the “wifi-ssid” to set your SSID. It is at line 44. And then set password to “wifi-password”. It is at line 45. Save it and click “Compile” to build the code. It takes time to compile code, please wait. You need an AWS account to use AWS IoT Core service. To create a thing, a policy, and certificates, then put the certificate to MQTT_server_setting.h file in the sample code. The sample code has included a certificate provided by Nuvoton for test only, so that you can quickly operate this example. If you don’t have an AWS account, it is recommended that you apply for an account and use your certificates in the example to observe the connection status on AWS IoT console page. After completed, “Success” will appear in the compile output window. The browser downloads the binary firmware file directly after a successful compiling. It will be saved in a default download folder. In Chrome, you can click download file and select “Show in folder”. Then we connect the NuMaker-IoT-M487 USB port to your computer. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the tutorial, the “Nu-Link Virtual Com Port” is COMx. Then use your favorite terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate. And no flow control settings. Then “Open” it. Back to the folder you just download the binary firmware file (Mbed-to-AWS-IoT.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. You can see the messages on terminal. The device has acquired IP address from Wi-Fi AP, then successfully connect to AWS IoT and subscribe a topic. Then press button (SW2) on board to send a message. You can see the message published to server and received a message from server. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to get more information, please contact us “SalesSupport@nuvoton.com” - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en
Produkte  Applikationen  Webinar  Uhrzeit - 59:3
Developing IoT devices can be a painful process. In this webinar, you will learn how to develop an IoT enabled device quickly and easily with Nuvoton IoT platforms. We will cover IoT device system architectures, security consideration, development kits for different cloud services, and the latest practices to bring your IoT products time to market quickly. Speaker: UE00 Senior Product Marketing Manager, Harry Chen - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://bit.ly/3bk0AD8 Contact us: SalesSupport@nuvoton.com #Product #Application #Webinar #General #en
Applikationen  Lernen  Uhrzeit - 4:3
The purpose of video is to demonstrate functions of NuMaker-RTU-NUC980 within 5 minutes, including Ethernet webserver, Wi-Fi webserver, USB camera, and NFS function. If you get the NuMaker-RTU-NUC980 board, you can follow this video to implement all the functions #application #learning #intermediate #en - For more information, please visit: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-rtu-nuc980?search_query=Chili&results=1 Contact us: SalesSupport@nuvoton.com
Applikationen  Lernen  Uhrzeit - 1:30
Nuvoton provides a new development platform, Chili. Chili is designed by NUC980 family. A user can begin application developing within 15 minutes once receiving this PCB. This PCB is very small and can be easily installed into another system after development complete. It is suitable for some remote control or IoT applications. #application #learning #intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-rtu-nuc980?search_query=Chili&results=1 Contact us: SalesSupport@nuvoton.com
Uhrzeit - 3:32
The NAU82011YG is a highly efficient, filter-free, mono Class-D audio amplifier with variable gain, which is capable of driving a 4Ω load with up to 2.9W output power. This device provides chip enable pin with extremely low standby current and fast start-up time of 4ms. The NAU82011YG is ideal for battery driven portable applications. NAU82011YG features 91% efficiency, low quiescent current (i.e. 1.25mA at 3.6V) and superior EMI performance. The audio input of this device can be configured as either single-ended or differential input mode. Target Applications: • Portable Audio Device/Speaker • Portable Navigation Device • Tablet PC Key Features: • Audio Input - Differential / Single-end input - DC PSRR Typ.@95dB - CMRR Typ.@63dB • Audio Output - Powerful Mono Class-D Amplifier - 2.9W (4Ω @ 5V, 10% THD+N) - 2.3W (4Ω @ 5V, 1% THD+N) - Low Output Noise: 20 μVRMS • Advance Feature - Low Current Shutdown Mode - Click-and Pop Suppression - Integrated Image Reject Filter - Integrated feedback resistor of 300 kΩ • Operating Characteristics - voltage range: 2.5 V to 5.5 V - Temperature range: -40°C to 85°C - Low Quiescent Current: 1.2mA@3.6V, 1.7mA@5V • Package - WLCPS-9
Ausbildung  Tool  Lernen  Uhrzeit - 5:0
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to record and play audio with Mbed OS on NuMaker-IoT-M487 development board. Open Chrome browser, and enter the URL https://ide.mbed.com to use the Mbed Online Compiler. After log in, make sure that NuMaker-IoT-M487 board already selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board. Click the “New” on the left of menu bar, a “Create new program” window will be displayed. You can see that the Platform has been set to NuMaker-IoT-M487. In the Template, select the "NuMaker audio playback" for this tutorial. Then click OK. Now you can see that the sample code has loaded on the page. The sample code has three functions: 1. Record 10 seconds sound and save to Micro SD card 2. Play sounds stored in Micro SD card 3. Loopback. Record sound and play it immediately. Click main.cpp to open it. Then scroll down to line 421. You can see the functions calls here. It set to loopback only. Let’s do a little modification. Hit a key on console to start record 10 seconds then play it, and then do loopback. printf("Press a key to start recording 10 seconds..."); getchar(); demo_record(); demo_play(); demo_loopback(); Save it and click “Compile” to build the code. Compilation takes a while, please wait. After the compilation is completed, “Success” will appear in the compile output window. The browser downloads the binary firmware file directly after a successful compiling. It will be saved in a default download folder. In Chrome, you can click download file and select “Show in folder”. Please plug an earphone commonly used for mobile phone in headphone jack on NuMaker-IoT-M487 board. For demonstration, we use a headphone splitter cable to connect a microphone and a speaker. Do not put the microphone and speaker too close to avoid feedback howling. Then connect the USB port to your computer and make sure the onboard LED lights up. Back to the folder you just download the binary firmware file (NuMaker-mbed-AudioPlayback-example.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the demonstration, the “Nu-Link Virtual Com Port” is COMx. Then use your favorite terminal tool. Here we use Putty. Open the COMx port with 9600 baud rate. And no flow control settings. Then “Open” it. Press “Reset” on board to run the firmware again. Press a key on terminal to start record. Speak for about 10 seconds, then your voice will be played. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to get more information, please contact us “SalesSupport@nuvoton.com” - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en
Ausbildung  Tool  Lernen  Uhrzeit - 3:55
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to use SD card with Mbed OS on NuMaker-IoT-M487 development board. Open Chrome browser, and enter the URL https://ide.mbed.com to use the Mbed Online Compiler. After log in, make sure that NuMaker-IoT-M487 board already selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board. Click the “New” on the left of menu bar, a “Create new program” window will be displayed. You can see that the Platform has been set to NuMaker-IoT-M487. In the Template, select the "NuMaker SD-File-System with SD mode" for this tutorial. Then click OK. Now you can see that the sample code has loaded on the page. LittleFS uses less memory, supports power failure protection. However, LittleFS is different from the FAT file system, so after uses littleFS, the SD card will be formatted as LittleFS. The sample code uses FAT file system as default. Just click “Compiler” to build the example. It is in compiling, please wait a moment. After the compilation is complete, “Success” will appear in the compile output window. The browser downloads the binary firmware file directly after a successful compiling. It will be saved in a default download folder or the folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”. Please insert a micro SD card into the card slot on the back of NuMaker-IoT-M487 board, then connect the USB to your computer and make sure the onboard LED lights up. Let’s back to the folder you just download the binary firmware file (NuMaker-mbed-SD-FileSystem-example.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the demonstration, the “Nu-Link Virtual Com Port” is COMx. Then use your favorite terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate And no flow control settings. Then “Open” it. Press “Reset” on board to run the firmware again. You can see the messages on terminal while accessing SD card. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to get more information, please contact us “SalesSupport@nuvoton.com” - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en
This website uses cookies to ensure you get the best experience on our website. Learn more