民生向け
- VGA FAN Gaming Lighting
- Capacitive Water Level Detection
- M55M1 AI Posture Tracking
- MA35H0 HMI Ordering Machine
- M55M1 AI Smart Desk Lamp
-
NuMaker-Lighting-ARGB Development Kit
-
Magic Board
-
NuEzAI-M55M1 Development Platform
-
AI Gesture Recognition
-
Smart ITO Panel Solution
- Smart HMI
- 世界初 e-Marker 内蔵 USB4 搭載機器向け Re-Timer IC
- HMI Platforms and Graphical Libraries Introduction
-
Wireless Smart Thermostat
- Gaming Lighting and Cooling Fans Control
- New HMI Platform NuMaker-HMI-MA35D1
- GPS Tracker for Pet
- Soy-milk Maker Driver
- Bluetooth Toothbrush Reference Design
- CSP MOSFET
- TWS Charging Box
- M031BT dual mode gaming mouse solution
- Four-in-one Smart Electronic Lock
- 高機能ヘッドセット
- ベビーギア
- DSC / DVC
- DVR
- ELA
- ゲーム機
- 家庭用機器
- メディアボックス
- マイクロプリンター
- セキュリティパネル
- スマートフォン支払
- 煙/一酸化炭素検出器
- サウンドバー
- おもちゃ
- ビデオ赤ちゃんモニター
- 音声認識
- WiFi CAM
- Heating Kitchen Appliance
- Wireless Charging
- Half-bridge Induction Cooker
- Smart Projector
- Laser TV
- 6-claw Robot
- Smart Plug
- USB Car Driving Simulator System
産業
- Low Power and Auto-Operation Mode Platform
- MA35D1 Dual-OS (RTOS & Linux) Application Demonstration
-
17-cell BMIC for Industrial 48V System
-
Enclosed Ceiling Fan with Lights Solution
-
BLE Power Meter
-
NUC980 MPU Advanced Battery Energy Storage Management
-
N9H31 HMI Platform
-
産業
-
MA35H0 Industrial HMI Platform
-
48V Industrial Fan Motor Driver
-
Totem Pole LLC EVB
- ARGB Fan Driver
- New Energy Gateway
- Industrial Weight scale
- Power Measurement
-
Power Delivery 3.0 compliant DC Fan
- MA35D1 HDMI Video Playback
- Digital Power Control
- 産業向けバッテリ監視 IC
- NUC980 OpenWrt Graphical Gateway
-
DALI Ecosystem - Control Gears and Devices
-
DALI Ecosystem - Application Controller
- High Voltage Fan Driver
- Low Voltage Fan Driver
- Motor Parameter Identify Tool
-
Totem Pole PFC Reference Board
- Motor Driver
- Electric Scooter
-
Air Purifier
- Out-of-band (OOB) Management Solution for Edge Devices
- Edge Computing for License Plate Recognition
- USB Type-C PD 3.0 TCPC and TCPM Solution
- Battery Management System
-
RF-GaN PA Module for 5G Base Station
- Servo Driver Module
- Elevator Call Board
-
Thermostat with Touch Key
- LoRaWAN ECO System
- Low Power ML51 Series Electronic Shelf Label
- Interactive Human Machine Interface Solution
- Plug and Play Iindustrial Measurement Development Platform
- IoT Development Platform
- NB-IoT IoT Development Platform
- Industrial Remote Terminal Unit
- Smart Water Meter
- Label Printer
- Face Recognition Attendance Machines
- 2Dバーコードスキャナ
- カードリーダー
- e-Balance
- eBike
- 電気メーター
- 顔認識
- ファン/天井ファン
- 指紋認識
- ガスメーター
- 熱メーター
- POS
- QRコードスキャナ
- 水量計
- Smart battery management system
- BLDC Motor Control
- 8x8x8 LED Cube
- Door Access control system
- Elevator Control System
- LED Display
Smart Home Appliances
- TOF Solution
- M467 LVGL Display
- TFT Color Thermostat
- Virtual Reality (VR) Solution
- HDMI2.1 4x2 Matrix Solution
- TOF sensing solution
-
Cold Chain Data Logger
- Color Display Wi-Fi Thermostat
- Smart Home Central Control utilizing IoT and Color Screen
- Smart Home Appliances with Video Playing Function
- Multi-Cloud Connection Platform
- TFT Thermostat
- Wireless Power Supply and Data Transfer Solution
- Machine Learning
- Intelligent Power Station
- PM2.5 Module
- OLED Display - GIF Format Decode (LZW) Supported
- Smart Toilet
IoT Security
- Matter for IT Monitor with Security
- M2354 for RTOS + PSA TF-M
- Cold Wallet Security
- CCTV VPN Security Module
- IoT Cloud-Ready Wireless Module
- Smart Sound Box
- IoT Secure Connection Solutions-1
- IoT Secure Connection Solutions-2
- Smart Meter for AMI 2.0
- Arm® Pelion Secure IoT Device Management Supported by M2351
- Fingerprint Secure IoT Door Lock
- USB FIDO Key for Identity Security
Audio / Video
- NSR Smart Audio Control and GPIO Expansion Solution
-
NSC74 Function Demonstration
-
NSP2340A03G Function Demonstration
- Multi-channel Audio DSP
- NAU83G60 Smart Amplifier
- NSC Series Voice Assistance Solutions
- NSP2340T Voice Assistance with Touch Solution
- Smart Office UC Headset Solution
- Smart Office UC Speakerphone Solution
- NSP series voice assistance solution
- Noise reduction and echo cancellation solution
- Demo board template - ISD2361
- Bluetoothオーディオ
- ドッキング of iPhone / Android
- テレビオーディオ
- WiFi A/V ストリーミング
- ワイヤレスマイク
- ワイアレススピーカー
ドッキング of iPhone / Android
-
トレーニング こうぐ 学ぶ ビデオの長さ - 5:9Hello everyone, I am Chris, the field application engineer from Nuvoton Technology. Today, I will introduce the application and principle of programmable seriel I/O aka PSIO on M251/M252. The programmable serial I/O of NuMicro M251/M252 series can generate arbitrary waveforms and combine them to achieve data transmission and reception of specific serial communication protocols. Of course, standard serial communication can also be achieved, such as UART SPI I2C Usually, it is common to use Timer+GPIO to achieve these specific communication protocols, but it is more complicated and requires frequent CPU intervention. When we use PSIO, this not only simplifies the complexity of the operation but also reduces the burden on the CPU. The saved CPU performance could be distributed in other places. Since all hardware operations do not require software intervention, the timing control is more precise. The principle of PSIO is to use a slot controller to control the pin input and output or determine the state, and it can also control the duration of these states. Each slot controller has eight slots, which can be used as eight settings, and the registers corresponding to each slot can access the data that needs to be input and output, and can also set the time for the current pin to maintain this state. Each slot can reach a checkpoint, usually 1 to 1, 2 to 2, 3 to 3, and so on. Each checkpoint can set the pin status of the corresponding slot within the corresponding time. Next, let’s take a look at a simple output-only example In the initial stage, we first set the state of the pin to be high before SLOT has started, so the output is high Then when the Slot controller receives the start signal, SLOT0 is set to output low level according to the setting of CP0 and waits for the time of SLOT0 to expire. Then SLOT1 is set to output low level according to the setting of CP1 and waits for the time of SLOT1 to expire. And so on, followed by SLOT2 output low level SLOT3 low level SLOT4 high level SLOT5 high level After SLOT5, since SLOT6 is not set, the waveform of the protocol can be completed with only six slots Between the time of the next data transmission, we set the interval low, so the output is low at this time Users can complete different protocols according to these simple operations. In the related resources section, we have provided two PSIO application notes. There are two protocol examples with more detailed operations and descriptions. If you want to know more details about PSIO, please download it from the URL in the video. Several sample codes of different protocols are also provided in BSP. That’s all for this tutorial. Thank you for watching it. Welcome to subscribe to our channel. If you want to know more information, please contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
-
トレーニング こうぐ 学ぶ ビデオの長さ - 4:26Hello everyone, I am Chris, the field application engineer from Nuvoton Technology. Today I will introduce the power modes of the M251/M252 series microcontroller. The M251/M252 series has multiple power modes. The differentiation is based on power consumption, wake-up time, the operable CPU, and peripherals. In normal mode, the CPU is running normally. In Idle mode, only the CPU clock is disabled while other peripherals work as usual. Normal mode and idle mode can be divided into high-efficiency high-speed PL0 mode and low-power low-speed PL3 mode according to CPU operating speed. We should note that in the low-speed PL3 mode, only the clock source of the CPU and peripherals is 32.768 or 38.4 kHz can run. In power-down mode, there are three types according to power consumption. The first is NPD (Normal Power Down Mode). The CPU and high-speed peripherals stop running, and only the low-speed peripherals can work normally. The second is FWPD (Fast Wake Up Power Down Mode), which is the fastest wake-up of the three power-down modes but consumes more power. The third is DPD (Deep Power Down Mode), which consumes the lowest power among the three power-down modes, but the data in the RAM cannot be retained, and the wake-up speed is the slowest. Specific peripherals or pins can only activate the wake-up. For power consumption and wake-up time, we list the corresponding data. Users can choose the most suitable power mode according to the required power consumption and wake-up time. We need to note that FWPD mode will consume more power in the power-down mode because this mode wakes up the fastest. The DPD mode is the least power consumption, but the longest wake-up time., Also, normal mode is a normal working mode, so there is no need to wake up. The time unit of the idle mode is different from the power-down mode, which is five cycles. The length of a cycle is determined according to the operating frequency used by the system. In the related resources section, we provide application notes for power management, which have more detailed operations and descriptions. If you want to know more, please download it from the URL in the video. There are also various power mode entry and wake-up methods in the BSP package; you can also refer to and use it. That’s all for the power modes introduction. Thank you for watching it. Please subscribe to our channel for more video resources. If you want to know more information, please contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
-
製品 学ぶ ビデオの長さ - 14:8For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com #Product #Learning #Basic #en 0:00 簡介 0:29 Nuvoton Low Power Microcontroller Family 1:24 NuMicro M251 Series Overview 3:31 M251 & M252 Low Power Series 4:08 M251 Series Remarkable Features 7:14 M251/M252 Power Mode 9:37 I NuMicro MCU Applications 12:09 Development Tools
-
トレーニング こうぐ 学ぶ ビデオの長さ - 2:21Hello everyone! I am Chris, the Field Application Engineer from Nuvoton Technology. Today, I will introduce how to run a simple sample code on NuMicro M251/M252 series microcontroller. First, we connect the M251/M252 NuMaker development Board to the computer. Then click the M251/M252 BSP folder, click the Sample Code folder, template folder, Keil folder, and finally open the Template project file. What we are going to do is running a simple GPIO Toggle LED Sample Code. Introduce the main program briefly. First, set GPIO PB14 to Output Mode. After writing a small loop, set PB14 to reverse. Finally, set CLK_SysTickDelay to 300,000 microseconds (uSec). Before Rebuild, we must add the GPIO Source Code to the Library, find the corresponding Source Code and load it, and press Rebuild after it is complete. After the Rebuild, press Load and program the Code into the IC. When programing is over, press the reset button on the development board to confirm whether the LED lights are flashing on the board. That’s all for the tutorial of running sample code. Thank you for watching it. If you want to know more information, please feel free to contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
-
製品 学ぶ ビデオの長さ - 9:3Nuvoton announced the latest ML51/ML54/ML56 microcontroller, built-in capacitive touch sensing, LCD driver highly integrated low power platform. Based on 1T 8051 core, running up to 24MHz, the power consumption in normal run mode is 80uA/MHz, lower than 1uA in power down mode the power consumption while power down with LCD on is lower than 20uA. 0:00 intro 0:37 NuMicro 8051 Microcontroller 1:38 ML51/ML54/ML56 Product Portfolio 2:18 ML51/ML54/ML56 Features 3:27 Broad Scalability 4:05 Provide 4 Different Power Modes 4:44 LCD Driver Feature 5:52 Touch Key Features 7:05 Target Applications #Product #Learning #Basic #en #ML51 #ML54 #ML56 #8051 #LowPower #LCD-Driver #HumanMachineInterface #HMI #TouchKey-IC #HomeAppliance #EmbeddedWorld2022 - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/ Contact us: SalesSupport@nuvoton.com
-
ビデオの長さ - 5:46經由ADC量測Bandgap電壓,能夠反推電池的電壓,再搭配電池的規格文件,可得知產品目前所剩電量。另外,結合新唐晶片內部紀錄bandgap電壓的機制,可以消除不同晶片間的製程誤差,以得到更精準的電池電壓量測結果。 - 更多產品資訊,請至新唐科技網站 https://bit.ly/3hVdcmC 購買管道:https://direct.nuvoton.com/tw/ 聯絡我們: SalesSupport@nuvoton.com
-
製品 学ぶ ビデオの長さ - 2:46Nuvoton NuMicro M031/M032 series microcontroller integrates an Arm Cortex-M0 core operating frequency up to 72 MHz, with 32-bit hardware divider, and is equipped with 16 ~ 512 KB Flash and 2~96 KB SRAM and provides 1.8V ~ 3.6V operating voltage. #Product #Learning #Basic #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/tw/m031-series/ contact us: SalesSupport@nuvoton.com
-
ビデオの長さ - 21:57新唐 NuMicro M031/M032 微控制器集成了工作頻率高達 72 MHz Arm Cortex-M0 內核,16~512KB Flash、2~96KB SRAM 可供選擇,封裝從 20 到 128 PIN,也提供 QFN32 緊湊型封裝。 - 更多產品資訊,請至新唐科技網站 https://bit.ly/3hVdcmC 購買管道:https://direct.nuvoton.com/tw/m031-series/ 聯絡我們: SalesSupport@nuvoton.com
-
ビデオの長さ - 2:5新唐 NuMicro M031/M032 微控制器集成了工作頻率高達 72 MHz,Arm Cortex-M0 內核,16 ~ 512 KB Flash、2 ~ 96 KB SRAM 可供選擇,封裝從 20 到 128 PIN,電壓範圍支援 1.8V ~ 3.6V。 - 更多產品資訊,請至新唐科技網站 https://bit.ly/3hVdcmC 購買管道:https://direct.nuvoton.com/tw/m031-series/ 聯絡我們: SalesSupport@nuvoton.com
-