Search

Selected option

Search Results

SearchIoT Device Management , find 47 items
  • Sort by
  • Most recent
  • Popularity
Training  Learning  Junior  Watch time - 7:33
This video show you how to develop with Nuvoton NuMaker-PFM-M487 platform to learn USB device function. You will learn to emulate a USB mouse by nuvoton development board, NuMaker-PFM-M487. #Training #Basic #en #Learning - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/ contact us: SalesSupport@nuvoton.com
Product  Application  Learning  Watch time - 5:20
Hi everyone, I'm Aaron. The FAE of Nuvoton technology. Today, I'm glad to show you the Nuvoton secure development board, NuMaker-IoT-M2354. The NuMaker-IoT-M2354 is an IoT evaluation board powered by the NuMicro® M2354 series. Before the introduction of NuMaker-IoT-M2354, I will take you to a quick understanding of NuMicro M2354. The M2354 is the latest NuMicro IoT series product which is based on Arm® Cortex®-M23 CPU core technology. The TrustZone® technology based on Armv8-M architecture is a CPU system-wide approach to microcontroller security. The M2354 series carry 1 Mbytes embedded Flash memory and 256 Kbytes SRAM. It's essential for IoT devices with real-time OS requirements. And you can focus on software development without warring about the flash and SRAM resource. The M2354 series is equipped with plenty of peripherals. In addition to providing UART I2C SPI Timer, it also supports the Quad SPI, USB FS OTG, and CAN BUS. Furthermore, to satisfy the IoT device's display development, the M2354 series built-in 8 COM x 40 SEG LCD controller drives up to 320 dots to meet various smart home and IoT appliances. In addition to providing many peripherals, the critical feature of M2354 is supporting many security functions. The secure boot ensures the legality and integrity of the running firmware. The hardware crypto with RSA/ECC/AES/SHA accelerators can help the device connect to the cloud fast and safely. Moreover, the M2354 is equipped with Key Store, which could be used with crypto accelerators to enhance the chip security level. To comply with Arm PSA CertifiedTM Level 3, the M2354 has implemented some countermeasures to protect against non-invasive attacks like side-channel attacks or fault injection attacks. The NuMaker-IoT-M2354 equips a Bosch environmental sensor, BME680, which contains temperature, humidity, barometric pressure, and VOC gas sensing capabilities. After getting data from the sensor, users can send data to the cloud, such as Pelion or AWS, by Mbed OS. Because M2354 supports hardware crypto, the data can be sent more efficiently and safely. The data could be shown on the LCD panel by the LCD library provided in the M2354 BSP. The NuMaker-IoT-M2354 contains a Wi-Fi module and LoRa module for wireless applications. Depending on the data throughput and power consumption, you can choose one of them for your IoT applications. In the LoRa network, each node is not connected but must be connected to the gateway before being linked back to the central host, or data can be transmitted to another node through the central host. For example, if choosing the LoRa module for the cloud development, you could use NUC980 LoRa Gateway for your gateway platform. The NuMaker-IoT-M2354 supports the radio frequency band of the LoRa module on 915MHz and 433MHz, depending on the customer's requirement. In addition to providing the rich peripheral, the NuMaker-IoT-M2354 also equips the Arduino UNO connector and mikroBUS™ connector for flexible applications. Suppose you want to develop other wireless connecting features like 4G-LTE or NB-IoT. In that case, the Nuvoton also provides a UNO-to-PCI adapter board to supports Quectel EC21 4G/LTE and Quectel BG96 NB-IoT modules. The NuMaker-IoT-M2354 also provides multiple power supplies by external power connectors and an ammeter connector that can instantly measure power consumption. In addition, the Nu-link2-Me on the board is a debugger and programmer supporting development on Keil, IAR, GCC, and Mbed IDE. #en #Learning #Basic #Application #Product - Online Purchase Development Tools: ● M2354 Series https://www.nuvoton.com/products/microcontrollers/arm-cortex-m23-mcus/m2354-series/index.html ● NuMaker-LoRa-NUC980 https://www.nuvoton.com/products/iot-solution/lora-platform/ ● NuMaker-M2354 https://direct.nuvoton.com/en/numaker-m2354 ● Quectel-BG96A https://direct.nuvoton.com/en/quectel-bg96a ● Quectel-EC21A https://direct.nuvoton.com/en/quectel-ec21a - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/ contact us: SalesSupport@nuvoton.com
Product  Tool  Learning  Watch time - 8:24
The video introduces Nuvoton's MPU N9H30's development set-up for Linux and Non-OS, taking NuMaker-emWin-RDK-N9H30 for example. Starting from the EVB introduction to BSP and related software downloads. - User manuals and related resource can be downloaded https://www.nuvoton.com/products/gui-solution/gui-reference-design/numaker-emwin-rdk-n9h30/ First, we introduce how to program Linux OS to the N9H30 evaluation board Find the N9H30 evaluation board resource that we used on Nuvoton’s Github and download the VMware Image https://github.com/OpenNuvoton/MPU-Family VMware application can be downloaded from the VMware website https://www.vmware.com/tw/products/workstation-player/workstation-player-evaluation.html First, open the VMware Find the ubuntu_NUC970_980_Linux folder we downloaded Choose Ubuntu 64-bit_nuvoton.vmx Choose Play virtual machine The password is “user” It will take a while to open this application for the first time Open the terminal when the system is ready Enter NUC970_Buildroot-master folder After entering the folder, we need to update the Buildroot tool Enter the command as shown below “git reset –hard” “git pull” After updating, enter the dl folder Remove the original Linux kernel and u-boot Enter the command as shown below “sudo rm -rf linux-master.tar.gz uboot-master.tar.gz” After entering, enter the password “user” Leave the dl folder and enter the Buildroot folder Enter the “make clean” command You don’t need to do these steps unless updating Buildroot tools Now, we set up the evaluation board configuration Enter configs folder to search evaluation board name Back to buildroot after searching Enter “make nuvoton_n9h30_emwin_defconfig” to generate configuration file After finishing these step, enter “make” to compile It will take about three hours to compile After compiling, copy the two files below to windows “/NUC970_Buildroot-master/output/images/uImage” “/NUC970_Buildroot-master/output/build/uboot-master/u-boot.bin” Create text file ”env-nor.txt” The content is shown below: baudrate=115200 bootdelay=1 stderr=serial stdin=serial stdout=serial setspi=sf probe 0 50000000 loadkernel=sf read 0x7fc0 0x200000 0x600000 bootcmd=run setspi;run loadkernel;bootm 0x7fc0 bootargs=noinitrd root=/dev/mtdblock2 rw rootfstype=jffs2 console=ttyS0 rdinit=/sbin/init mem=32M mtdparts=m25p80:0x200000@0x0(u-boot),0x600000@0x200000(kernel),-(user) ignore_loglevel Then, we need to install NuWriter and related file The NuWriter is a programming tool provided by Nuvoton. The NuWriter application and firmware code are open-sourced, and users can add new features or develop new user interfaces per user’s application NuWriter: https://github.com/OpenNuvoton/MPU-Family Open “NUC970_NuWriter-master” Enter Driver folder and install “WinUSB4NuVCOM.exe” Enter /Nuwriter/Release and execute NuWriter Choose IC number based on the evaluation board We need to program Image to SPI Flash, so we choose SPI Here we need to turn the all Power-On Setting to ON Push Reset button Return to NuWriter to check the green light and the connection If it is not connecting, click Re-Connect to reconnect After confirm the connection, start to program Image Program the three files to particular address u-boot.bin program to 0xe00000 env.nor.txt program to 0x80000 uImage program to 0x200000 After programming, turn the Power-On Setting to off Push the Reset button Evaluation board can start to boot from SPI-NOR After booting, we need to find the rcS demo application under/etc/init.d Enter “chmod 777 rcS” to modify the application Now, you can see the application on the evaluation board panel Here, we finish compiling and programming The next topic is how to compile and program Non-OS code First, download MDK-Arm from the link below https://www.keil.com/download/product/ Download the Non-OS BSP provided by Nuvoton https://github.com/OpenNuvoton/MPU-Family The BSP includes Keil environment set up user manual Use Keil need to purchase the related license After downloading, Open Keil uVision Click the File on the upper left and choose Open Go to the BSP that we downloaded choose BSP, SampleCode, emWin_SimpleDemo, KEIL and emWin_SimpleDemo.uvproj Click Option for Target Click Device and choose NuMicro ARM9 Database and N9H_series After setting up, click Rebuild, and it will generate a sample code application which is a binary file Open the NuWriter and connect it to the evaluation board Choose SPI and search the application we built \N9H30_emWin_Non-OS_BSP_v1.04.000\N9H30_emWin_Non-OS_BSP_v1.04.000\BSP\SampleCode\emWin_SimpleDemo\KEIL\obj\emWin_SimpleDemo_FW070TFT_24BPP.bin Follow the setting and program the file to 0x0 After programming, turn the Power-On Setting to boot from SPI You can see the demo application on the evaluation #Basic #Product #Tool #Learning #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/ contact us: SalesSupport@nuvoton.com
Product  Application  Webinar  Watch time - 1:14:18
Debriefing of M2354 enhanced MCU security features for Smart Meter applications. You will learn the infrastructure solution, AMI 2.0 smart meter, benefitting from the IoT security microcontroller. The brand new NuMicro M2354 IoT Security microcontroller series inherits the security features of the M2351 that have been Arm PSA Certified™ Level 1, Level 2, and PSA Functional API Certified, M2354 Series endows the microcontrollers used by network-connected devices with the physical level (chip-level) security protection function. It ensures the software and hardware integration system products developed can meet information and communication security requirements for the international mainstream standards. It can also simplify the implementation of regulations-compliant products that require security certification. Simultaneously, it satisfies the development and design requirements of the device itself that requires a low-power operation. - Agenda: • Nuvoton business at a glance • Nuvoton microcontroller ecosystem • A brief introduction to international mainstream IoT security standards • NuMicro M2354 IoT security series • Smart meter solution • Multi-OS and multi-cloud support for IoT node devices • Conclusion - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/ contact us: SalesSupport@nuvoton.com #Product #Application #Webinar #General #en
Application  Webinar  Watch time - 53:19
The security issues of every network-connected device pose new challenges for system developers. More and more national or regional network security supervision departments have proposed corresponding security standards and regulations. Nuvoton Technology debuts brand new NuMicro® M2354 series products. In addition to inheriting NuMicro® M2351 Series security features that have passed Arm® PSA Certified™ Level 1, Level 2, and PSA Functional API Certified, M2354 Series endows the microcontrollers used by network-connected devices with the physical level (chip-level security) security protection function. Simultaneously, it satisfies the device's development and design requirements requiring low-power operation while performing secure networking. #en #webinar #Intermediate #application - Agenda: • Security Threats to IoT Environment • NuMicro M235x Secure IoT MCUs • Application Fields for NuMicro M235x • Multi-OS and Multi-Cloud Support for IoT Node Devices • Summary - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/ contact us: SalesSupport@nuvoton.com
Webinar  Watch time - 47:53
Artificial intelligence, edge, and cloud computing make factory automation and Industry 4.0 smart manufacturing possible. These technologies can help manufacturers optimize production processes based on structured and unstructured data, analyze them, and share them across the entire ecosystem. However, all these cloud technologies must be rooted in every sensor, machine, test, and monitoring equipment. One of the keys to building a smart factory is to connect these sensors and devices, collect meaningful data, and provide necessary feedback to these devices. In this webinar, we will cover the following topics. - Agenda: 1.Smart factory ecosystem: sensor, edge device, hub/ gateway, and cloud ● Data collection ● Machine learning and artificial intelligence ● Feedback 2.IIoT node ● Dependency with cloud ● IIoT hardware and software architectures ● Case study 3.Nuvoton IIoT solutions - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/ contact us: SalesSupport@nuvoton.com
Application  Learning  Watch time - 3:46
This video demonstrates a AMI 2.0 compliant Smart Meter design with Android APP of real time data reading #en #Learning #Intermediate #Application - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com contact us: SalesSupport@nuvoton.com
Watch time - 4:15
Take Nuvoton NuMaker-IIoT-NUC980 running Linux as the platform and learn how to develop various functions. Watch this video, you will learn how to use cellular, such as LTE or NB-IoT, to connect to network on NuMaker-IIoT-NUC980 board. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/en/numaker-iiot-nuc980 Contact us: SalesSupport@nuvoton.com
Training  Tool  Learning  Watch time - 3:24
1. Show how to use the ICP Programming Tool to store the firmware to the SPI Flash device inside Nu-Link2-Pro, then after connecting the target chip, press the trigger button to complete offline programming. 2. Demonstrate how to use the ICP Programming Tool to store the firmware to the SPI Flash device inside Nu-Link2-Pro, and then connect the target chip. The external signal completes offline programming through the Control Bus interface. This interface connecting to the automatic programming machine is very convenience. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://bit.ly/3bk0AD8 Contact us: SalesSupport@nuvoton.com #en #Tool #Training #Intermediate #Learning
Training  Tool  Learning  Watch time - 3:23
Demonstrate how to use the ICP Programming Tool to generate a programming file, and use the PC to save the firmware to the USB/SD storage device, insert the USB/SD storage device into Nu-Link2-Pro, and then connect the target chip, press the trigger button to complete offline programming. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://bit.ly/3bk0AD8 Contact us: SalesSupport@nuvoton.com #en #Tool #Training #Intermediate #Learning
Training  Tool  Learning  Watch time - 4:26
Hello everyone, I am Chris, the field application engineer from Nuvoton Technology. Today I will introduce the power modes of the M251/M252 series microcontroller. The M251/M252 series has multiple power modes. The differentiation is based on power consumption, wake-up time, the operable CPU, and peripherals. In normal mode, the CPU is running normally. In Idle mode, only the CPU clock is disabled while other peripherals work as usual. Normal mode and idle mode can be divided into high-efficiency high-speed PL0 mode and low-power low-speed PL3 mode according to CPU operating speed. We should note that in the low-speed PL3 mode, only the clock source of the CPU and peripherals is 32.768 or 38.4 kHz can run. In power-down mode, there are three types according to power consumption. The first is NPD (Normal Power Down Mode). The CPU and high-speed peripherals stop running, and only the low-speed peripherals can work normally. The second is FWPD (Fast Wake Up Power Down Mode), which is the fastest wake-up of the three power-down modes but consumes more power. The third is DPD (Deep Power Down Mode), which consumes the lowest power among the three power-down modes, but the data in the RAM cannot be retained, and the wake-up speed is the slowest. Specific peripherals or pins can only activate the wake-up. For power consumption and wake-up time, we list the corresponding data. Users can choose the most suitable power mode according to the required power consumption and wake-up time. We need to note that FWPD mode will consume more power in the power-down mode because this mode wakes up the fastest. The DPD mode is the least power consumption, but the longest wake-up time., Also, normal mode is a normal working mode, so there is no need to wake up. The time unit of the idle mode is different from the power-down mode, which is five cycles. The length of a cycle is determined according to the operating frequency used by the system. In the related resources section, we provide application notes for power management, which have more detailed operations and descriptions. If you want to know more, please download it from the URL in the video. There are also various power mode entry and wake-up methods in the BSP package; you can also refer to and use it. That’s all for the power modes introduction. Thank you for watching it. Please subscribe to our channel for more video resources. If you want to know more information, please contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
Training  Tool  Learning  Watch time - 5:53
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to connect to AWS IoT service using MbedOS on NuMaker-IoT-M487 development board The sample code is on GitHub, the URL is https://github.com/OpenNuvoton/Mbed-to-AWS-IoT To avoid typos, use keyword “OpenNuvoton” to search on google. Find the Nuvoton on GitHub, and click it On the Nuvoton GitHub page, use AWS as keyword to search the sample code: Mbed-to-AWS-IoT Right click to copy the URL for later use. Then enter the URL https://ide.mbed.com After log in, make sure the NuMaker-IoT-M487 board has selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS”. There is detailed description of how to add a board. Click the “Import” on the left of menu bar. In the “Import Wizard”, click “Click here” Please paste or key in the sample code URL to “Source URL:”, Select Import as “Program” Click “Import Name”, the project name “Mbed-to-AWS-IoT” will be filled automatically. Then click “Import”. After sample code imported, click “mbed_app.json” to open it. To use Wi-Fi, you have to configure SSID and password to match your Wi-Fi AP setting. In NuMaker_IOT_M487 session of mbed_app.json file, find the “wifi-ssid” to set your SSID. It is at line 44. And then set password to “wifi-password”. It is at line 45. Save it and click “Compile” to build the code. It takes time to compile code, please wait. You need an AWS account to use AWS IoT Core service. To create a thing, a policy, and certificates, then put the certificate to MQTT_server_setting.h file in the sample code. The sample code has included a certificate provided by Nuvoton for test only, so that you can quickly operate this example. If you don’t have an AWS account, it is recommended that you apply for an account and use your certificates in the example to observe the connection status on AWS IoT console page. After completed, “Success” will appear in the compile output window. The browser downloads the binary firmware file directly after a successful compiling. It will be saved in a default download folder. In Chrome, you can click download file and select “Show in folder”. Then we connect the NuMaker-IoT-M487 USB port to your computer. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the tutorial, the “Nu-Link Virtual Com Port” is COMx. Then use your favorite terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate. And no flow control settings. Then “Open” it. Back to the folder you just download the binary firmware file (Mbed-to-AWS-IoT.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. You can see the messages on terminal. The device has acquired IP address from Wi-Fi AP, then successfully connect to AWS IoT and subscribe a topic. Then press button (SW2) on board to send a message. You can see the message published to server and received a message from server. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to get more information, please contact us “SalesSupport@nuvoton.com” - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/en/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en