NuMicro[®] Family Based on Arm9[™]

NuMaker-LoRaG915-NUC980 NuMaker-LoRaG868-NUC980 User Manual

Evaluation Board for LoRa Ecosystem Gateway Design

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions. All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation. <u>www.nuvoton.com</u>

Table of C	ontents	
1 OVER	VIEW	5
2 FEAT	URES	7
3 HARD	WARE CONFIGURATION	8
3.1	Front View	8
3.2	Rear View	. 10
4 QUIC	K START	12
4.1	Preparation	. 12
4.2	NUC980 Linux BSP Introduction	. 12
4.3	BSP Download	. 12
4.4	Driver Installation	. 12
4.5	Hardware Setting	.14
4.0	Run Derault Linux Kerner	.17
4.7 5 NU IVA/I		10
5 10000		19
5.1	SPI NAND Mode	.20
D.Z		.20
		24
6.1	Block Diagram Schematic	.24
6.2	GPIO List Schematic	.25
0.3 6.4		.26
6.5	Power Filter Schematic	. 27 28
6.6	Configure Schematic	.29
6.7	NUC123ZD4AN0 Schematic	.30
6.8	Memory Schematic	.31
6.9	RMII_PE Schematic	.32
6.10	RAK Sensor Connecter Schematic	.33
6.11	SD1/eMMC1 Schematic	.34
6.12	RS485 Schematic	.35
6.13		.36
6.14		.37
7 REVIS	SION HISTORY	39

List of Figures

Figure 1-1 NuMaker-LoRaG-NUC980 Evaluation Board (Main Board)	5
Figure 1-2 NuMaker-LoRaG915-NUC980 Evaluation Board	6
Figure 3-1 Front View of NuMaker-LoRaG-NUC980	8
Figure 3-2 Rear View of NuMaker-LoRaG-NUC980	11
Figure 4-1 Nuvoton USB Driver Installation Setup	12
Figure 4-2 Nuvoton USB Driver Installation	14
Figure 4-3 Hardware Setting (1)	15
Figure 4-4 Hardware Setting (2)	15
Figure 4-5 Nuvoton VCOM	16
Figure 5-1 Set Chip	19
Figure 5-2 SPI NAND – New Image	20
Figure 5-3 SPI NAND – u-boot spl	21
Figure 5-4 SPI NAND – u-boot	21
Figure 5-5 SPI NAND – 980uimage	22
Figure 5-6 SPI NAND – Environment	23
Figure 6-1 Block Diagram Schematic	24
Figure 6-2 GPIO List Schematic	25
Figure 6-3 Power Schematic	26
Figure 6-4 NUC980DK Schematic	27
Figure 6-5 Power Filter Schematic	28
Figure 6-6 Configure Schematic	29
Figure 6-7 NUC123ZD4AN0 Schematic	30
Figure 6-8 Memory Schematic	31
Figure 6-9 RMII_PE Schematic	32
Figure 6-10 RAK Sensor Connecter Schematic	33
Figure 6-11 SD1/eMMC1 Schematic	34
Figure 6-12 RS485 Schematic	35
Figure 6-13 USB Schematic	36
Figure 6-14 Front PCB Placement	37
Figure 6-15 Back PCB Placement	38

List of Tables

Table 5-1 Power-on Setting Table	19

1 OVERVIEW

The NuMaker-LoRaG915/LoRaG868-NUC980 is an evaluation board for LoRa ecosystem gateway design based on NuMicro NUC980 series microprocessor. The NuMaker-LoRaG915/LoRaG868-NUC980 is designed for project evaluation, prototype development and function validation for LoRa gateway application.

The NuMaker-LoRaG915/LoRaG868-NUC980 evaluation board is used for 915 MHz and 868 MHz frequency band, respectively. Depending on the used frequency band, the NuMaker-LoRaG915/LoRaG868-NUC980 evaluation board can be combined with the NuMaker-LoRaG-NUC980 evaluation board, as shown in Figure 1-2.

The NuMaker-LoRaG915/LoRaG868-NUC980 is based on NUC98061DKY. For the development flexibility, the NuMaker-LoRaG915/LoRaG868-NUC980 provides the extension connectors of NUC98061DKY, LoRa module, one RJ45 Ethernet port, one USB Host, one USB Device/Host, two sets of RS485, and the capability of adopting multiple power supplies.

The NuMaker-LoRaG915/LoRaG868-NUC980 supports Nuvoton's development tool "NuWriter" for programming and virtual COM (VCOM) port for printing debug messages on PC.

In addition to Lora gateway, Nuvoton Lora ecosystem also has Lora end-devices. Please refer to NuMaker-LoRaD-M252 User Manual for more information.

For the Lora gateway and Lora device software setup manual, please refer to <u>Constructing LoRaWAN</u> <u>Network User Manual</u> for more information.

Figure 1-1 NuMaker-LoRaG-NUC980 Evaluation Board (Main Board)

nuvoTon

Figure 1-2 NuMaker-LoRaG915-NUC980 Evaluation Board with NuMaker-LoRaG868-NUC980 Evaluation Board (Extension Board)

2 FEATURES

- Microprocessor: NUC980DK61Y with LQFP128 pin MCP package and DDR2 (64 MB), which can run up to 300 MHz
- SPI Flash: Quad mode system booting or data storage, using W25N01GVZE1G SPI-NAND (128 MB)
- SD1/eMMC1: Use SD/eMMC memory card for system booting, data storage or SDIO (Wi-Fi) device
- UART0: Connected to Virtual COM port for system development, debug message output
- JTAG interface provided for software development
- RAK and peripheral connector, including UART, SPI, I2C and RAK sensor interface
- RJ45 port (Ethernet0) connector
- UART1-RS485 header with transceiver controller interface
- UART2-RS485 header with transceiver controller interface
- 3 sets of LEDs for status indication
- 2 sets of user-configurable push button keys
- 1 set of system-reset push button key
- USB port-0 that can be used as Device/Host and USB port-1 that can be used as Host, supports pen drives, keyboards, mouse and printers
- 3.3V I/O power, 1.8V Memory power and 1.2V core power

3 HARDWARE CONFIGURATION

3.1 Front View

Figure 3-1 shows the main components from the front view of NuMaker-LoRaG-NUC980 board.

Figure 3-1 Front View of NuMaker-LoRaG-NUC980

• +5V In (J1): Power 5V input

Power Model	CON1 USB Port (Micro-B)	CON6 USB Port (Micro-B)	J1
Model 1	Connect to PC	-	-
Model 2	-	Connect to PC	-
Model 3	-	-	5V Input

- System Reset (SW4): System will be reset if the SW4 button is pressed.
- Virtual COM (CON1, U5): NUC123ZD4AN0 microcontroller (U5), USB micro-B connector (CON1) to PC, for debug message output.
- User indication LEDs (LED1, LED2):

LED	Color	GPIO pin of NUC980
LED1	Yellow	PB8
LED2	Green	PA6
LED3	Red	PB13

 SPI NAND Flash (U6): Use Winbond W25N01GVZE1G 128MB (U6) for system booting, supporting dual / quad mode.

JTAG interface (J1/NC)

Connector	GPIO pin of NUC980	Function
J1.1	-	V _{DD33}
J1.2	PG15	nTRST
J1.3	PG14	TDI

nuvoTon

NuMaker-LoRaG915/LoRaG868-NUC980

J1.4	PG13	TMS
J1.5	PG12	ТСК
J1.6	PG11	TDO
J1.7	-	nRESET
J1.8	-	Vss

• RAK and peripheral connector (CON3)

Connector	GPIO pin of NUN980	Function
CON3.1	-	V _{DD33}
CON3.2	-	VIN
CON3.3	PD15	I2C3_SDA
CON3.4	-	VIN
CON3.5	PD14	I2C3_SCL
CON3.6	-	Vss
CON3.7	-	V _{DD18}
CON3.8	PD12	UART4_TXD
CON3.9	-	Vss
CON3.10	PD13	UART4_RXD
CON3.11	PC0	SX1308_RESET
CON3.12	PC8	S0_D0
CON3.13	PF3	S0_CLK
CON3.14	-	Vss
CON3.15	PC4	S0_PCLK
CON3.16	PC9	S0_D1
CON3.17	PC5	S0_HSYNC
CON3.18	PC10	S0_D2
CON3.19	PD10	SPI0_DO
CON3.20	-	Vss
CON3.21	PD11	SPI0_DI
CON3.22	PC11	S0_D3
CON3.23	PD9	SPI0_CLK
CON3.24	PD8	SPI0_SS0
CON3.25	-	Vss
CON3.26	PC12	S0_D4
CON3.27	PB7	I2C2_SDA
CON3.28	PB5	I2C2_SCL
CON3.29	PC6	S0_VSYNC
CON3.30	-	Vss
CON3.31	PC7	S0_FIELD
CON3.32	PC13	S0_D5
CON3.33	PC1	GPS_RESET
CON3.34	-	Vss
CON3.35	PC2	GPS_STANDBY
CON3.36	PC14	S0_D6
CON3.37	PA0	S0_I2C0_SDA

nuvoTon

NuMaker-LoRaG915/LoRaG868-NUC980

CON3.38	PC15	S0_D7
CON3.39	-	Vss
CON3.40	PA1	S0_I2C0_SCL

- Ethernet0_PE (CON2, U7): For Ethernet port, the NUC980 supports RMII interface that adds one Ethernet PHY IP101GR to RJ45 connector with LED indicator
- USB0 Device/Host (CON6, JP3): USB0 Device/Host Micro-B connector, By JP3 status or defined by the ID pin of the USB cable
- USB1 Host (CON7): USB1 for USB Host with type-A connector
- User Key SWs (K1 and K2)

Кеу	GPIO pin of NUC980
K1	PE10
К2	PE12

• Power on setting (SW1, R17~R20)

Switch	Status	Function	GPIO pin of NUC980
SW1.2/SW1.1	ON/ON	Boot from USB	PG1/PG0
SW1.2/SW1.1	ON/OFF	Boot from SD/eMMC	PG1/PG0
SW1.2/SW1.1	OFF/ ON	Boot from NAND Flash	PG1/PG0
SW1.2/SW1.1	OFF/OFF	Boot from QSPI0 Flash	PG1/PG0

Resistance	Status	Function	GPIO pin of NUC980
R17	Solder R	Watchdog Timer OFF	PG3
R17	Remove	Watchdog Timer ON	PG3

Resistance	Status	Function	GPIO pin of NUC980
R18	Solder R	UART0 debug message ON	PG5
R18	Remove	UART0 debug message OFF	PG5

Resistance	Status	Function	GPIO pin of NUC980
P20/P10	Solder R/	SPI-NAND Flash boot with 1-	PG9/PG8
N20/N 19	Solder R	bit mode	
R20/R19	Solder R/	SPI-NAND Flash boot with 4-	PG9/PG8
	Remove	bit mode	
R20/R19	Remove/ Solder	SPI-NOR Flash boot with 4-bit	PG9/PG8
	R	mode	
R20/R19	Remove/	SPI-NOR Flash boot with 1-bit	PG9/PG8
	Remove	mode	

• SOC CPU: NUC980DK61Y (U4)

3.2 Rear View

Figure 3-2 shows the main components from the rear view of NuMaker-LoRaG-NUC980 board.

Figure 3-2 Rear View of NuMaker-LoRaG-NUC980

•	VCOM ICE interface: ICE Controller NUC123ZD4AN0	(U5	i), USB connector	(CON1) to PC Host
---	---	-----	-------------------	-------	--------------

Connector	Pin Name	Functions	
CON1.1	V _{DD33}	DC 3.3V	
CON1.2	ICE_DAT	Serial Wired Debugger Data	
CON1.3	ICE_CLK	Serial Wired Debugger Clock	
CON1.4	RST#	VCOM Chip Reset, Active Low.	
CON1.5	V _{SS}	Power Ground	

- RS485 (JP1, U9): SN65HVD11DR transceiver controller of RS485(U9), RS485 header(JP1) connect to device for communication
- RS485 (JP2, U10): SN65HVD11DR transceiver controller of RS485(U10), RS485 header(JP2) connect to device for communication
- MicroSD Card Slot: T-Flash slot (CON4)

4 QUICK START

4.1 Preparation

The PC must install the relevant drivers to be able to communicate with the NuMaker-LoRaG915/LoRaG868-NUC980. The following sections will introduce the installation steps and how to run the platform.

4.2 NUC980 Linux BSP Introduction

The NUC980 Linux BSP provides cross compilation tools based on Linux operating system. The BSP has been tested in different x86 Linux distributions, including Ubuntu, CentOS, Debian, etc. Because there are so many distributions out there with different system configuration, it is sometimes necessary to change system setting or manually install some missing component in order to cross compile. Linux development environment could either be native, or install in a virtual machine executed on top of other operating system.

For more details about NUC980 BSP, please refer to "NUC980 Linux 4.4 BSP User Manual" in the "Documents" directory.

4.3 BSP Download

The programming tool requires a NuWriter driver to be installed on PC first. Please visit Nuvoton official <u>website</u> to download the "<u>NUC980_Linux-4.4_BSP</u>".

4.4 Driver Installation

The programming tool requires a Nuvoton USB driver to be installed on PC first. Please follow the steps below to install the WinUSB driver.

Run the "WinUSB4NuVCOM.exe" before the USB cable is plugged in. The "WinUSB4NuVCOM.exe" can be found in the "Tool" directory. Power on the NUC980 Series MPU evaluation board (EVB) and plug the USB cable into PC, and the Windows shall find a new device and request to install the driver.

Figure 4-1 Nuvoton USB Driver Installation Setup

Click "Next". The WinUSB driver Setup Wizard will be started.

B Setup - WinUSB driver(Nuvoton VCOM)	
Select Destination Location Where should WinUSB driver(Nuvoton VCOM) be installed?	
Setup will install WinUSB driver (Nuvoton VCOM) into the foll	owing folder.
To continue, click Next. If you would like to select a different folder,	dick Browse.
	biowsen.
At least 19.8 MB of free disk space is required.	
< Back	t > Cancel
링 Setup - WinUSB driver(Nuvoton VCOM)	
Select Start Manu Folder	
Where should Setup place the program's shortcuts?	
Setup will create the program's shortcuts in the following St	art Menu folder.
To continue, click Next. If you would like to select a different folder,	click Browse.
WinUSB driver (Nuvoton VCOM)	Browse
< <u>B</u> ack <u>N</u> ext	Cancel

nuvoTon

Setup is now ready to be computer.	gin installing WinUSB driver(Nuvoton VCOM) on your	2			
Click Install to continue wi change any settings.	Click Install to continue with the installation, or click Back if you want to review or change any settings.				
Destination location: C:\Program Files\Wir	Destination location: C:\Program Files\WinUSB4NuVCOM				
Start Menu folder: WinUSB driver(Nuvo	ton VCOM)				
	-				
٠	• •				
	< Back Instal Cancel				
evice Driver Installation Wiza	rd	Ĩ			
	Completing the Device Driver Installation Wizard				
	The drivers were successfully installed on this computer.				
	Driver Name Status]			
	Nuveton NuVCOMDevie Device Updated				

Figure 4-2 Nuvoton USB Driver Installation

The USB serial port function is used to print some messages on PC API, such as SecureCRT, through the standard UART protocol for debugging program.

Please download USB CDC driver from Nuvoton official website and executing the "NuvotonCDC_V1.00.001_Setup.exe" to install the driver:

4.5 Hardware Setting

The PC Host will supply 5V power to the NuMaker-LoRaG-NUC980 and will recognize the board as a USB composite device.

The VCOM port function is used to print some messages on some Terminal Tools, such as Tera Term, and PuTTY. The VCOM port function is based on the standard UART protocol and used as a

debugging function.

Figure 4-3 Hardware Setting (1)

Figure 4-4 Hardware Setting (2)

To check all required drivers are installed successfully, please follow the steps below:

 Select USB ISP mode and enable the UART_0 message. NuMaker-LoRaG-NUC980 provides jumpers (SW1) to select boot-up conditions. The jumpers (SW1) ON is used to select USB ISP mode.

Switch	Status	Function	GPIO pin of NUC980
SW1.2/SW1.1	ON/ON	Boot from USB	PG1/PG0
SW1.2/SW1.1	ON/OFF	Boot from SD/eMMC	PG1/PG0
SW1.2/SW1.1	OFF/ ON	Boot from NAND Flash	PG1/PG0
SW1.2/SW1.1	OFF/OFF	Boot from QSPI0 Flash	PG1/PG0

The NuMaker-LoRaG-NUC980 evaluation board defaults to enable the UART_0 message. If you

need to disable the NuMaker-LoRaG-NUC980 evaluation board UART_0 message, you must remove the resistor R25.

Switch	Status	Function	GPIO pin of NUC980
R24	ON/OFF	Watch Dog	PG3
R25	ON/OFF	UART0 Message	PG5
R27/R26	ON/ON	SPI NAND, 1 bit	PG9/PG8
R27/R26	ON/OFF	SPI NAND, 4 bit	PG9/PG8
R27/R26	OFF/ ON	SPI NOR, 4 bit	PG9/PG8
R27/R26	OFF/OFF	SPI NOR, 1 bit	PG9/PG8

2. Provide 5V power through 5V input connector or USB cable.

3. Plug in the USB cable and check the connection status.

If the installation in section 4.3 Driver Installation is successful, a virtual COM port named "**WinUSB driver (Nuvoton VCOM)**" can be found by using "Device Manager" to check the ports devices.

Figure 4-5 Nuvoton VCOM

4. Plug in the USB cable

The USB serial port function is used to print some messages on PC API, such as SecureCRT, through the standard UART protocol for debugging program.

If the installation in section 4.3 Driver Installation is successful, the PC will recognize the board as a USB composite device when the USB micro-B port connect the PC host.

▲ IPT Ports (COM & LPT)
Nuvoton Virtual Com Port (COM14)

Check the COM port number from device manager.

l	Serial-COM15 - SecureCRT	_ <u> </u>	
	ile Edit View Options Transfer Script Tools Help		
	🕄 🔀 🎧 🏭 Session Options - Serial-COM15	×	
	Serial-CDM15 Category:	×	
	Connection Serial Options Port: Connection Image: Connection Port: Image: Connection Image: Connection Image: Connection Port: Image: Connection Port		
		1	
	UK Cancel]	
R	sady Serial: COM15 1, 1 36 Rows, 103 Cols VT100	NUM //	

Use SecureCRT, HyperTerminal, Putty or TeraTerm to open the serial COM port, and set the baud rate to 115200.

10110200.			
	a 24 - SecureCRT	- 0	×
	File Edit View Options Transfer Script Tools Help		
	19 19 17 18 18 1 10 18 19 17 18 19 18 19 18 19 18 19 18 18 19 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18		
	24		×
	24 NUC980 IBR 20180813 Boot from USB		× (
			~
	Ready Serial: COM24 4, 1 42 Rows, 87 Cols VT100	CAP	

After pressing the reset button (SW1), the chip will reprogram application and print out debug message.

4.6 Run Default Linux Kernel

To run the Linux OS in EVB, please follow the steps below:

- 1. Set the board to boot from QSPI0 Flash by switching SW1.2/SW1.1 to OFF/OFF.
- 2. Plug in the USB cable to VCOM.

3. Press the RESET button, and the board will start the default Linux kernel.

4.7 Make Your Own Embedded Linux

VMWare Linux development environment:

- A packaged Linux platform to develop applications on NUC980/NUC970 series EVBs. It is integrated with relevant kits of NUC980/NUC970 development environment. It simplifies the installation process and speeds up development time.
- ➤ Links:

<u>NUC980/NUC970 Linux Environment on VMware User Manual</u> NUC980/NUC970 Linux Environment on VMware

If it is your first time to use the NUC980/NUC970 Linux Environment on VMware, you must update the buildroot, kernel and uboot first (refer to section 2.4 in the *NUC980/NUC970 Linux Environment on VMware User Manual*) and choose the corresponding board configuration (refer to section 2.5 in the *NUC980/NUC970 Linux Environment on VMware User Manual*).

5 NUWRITER TOOL

The NuWriter can download images to SPI NAND Flash while the NUC980 is in USB ISP mode. This chapter shows how to use this tool to boot-up from SPI NAND Flash.

The NUC980 Series MPU EVB provides jumpers to select boot-up conditions. To select USB ISP mode, the statuses of SW1.1 and SW1.2 are ON. For other boot selection, refer to the following table:

Power-on setting	SW1.2	SW1.1
USB ISP	ON	ON
Boot from eMMC/SD	ON	OFF
Boot from NAND	OFF	ON
Boot from SPI	OFF	OFF

Table 5-1 Power-on Setting Table

To use NuWriter, please follow the steps below:

- 1. Power-on NUC980 Series MPU EVB.
- Double-click "NuWriter.exe" on PC. NuWriter will start and a window appears. Select target chip to NUC980 series and select DDR parameter to DDR initial files. Note that the tool cannot work if the WinUSB4NuVCOM driver is not found.
- 3. Click "**Continue**" to use NuWriter tool.

Nuvoton NuWriter v1.01
NUC980 series
Select DDR parameter :
NUC980DK61Y.ini
📲 Quit 🖒 Continue(4)
🗹 Auto to countinue

Figure 5-1 Set Chip

The NuWriter provides seven types of to be downloaded images including DDR/SRAM, SPI, NAND, eMMC/SD, SPI NAND, PACK and Mass Production. This chapter shows how to download images to SPI NAND Flash. If you want to choose others types to download images, please refer to "*NUC980 NuWriter User Manual*" in the "Documents" directory.

5.1 SPI NAND Mode

This mode can write a new image to SPI NAND Flash and specify the type of the image. The types can be recognized by uboot or Linux. The Image type is set as Loader, Data, Environment or Pack.

5.2 Operation Steps

According to Figure 5-2, follow the steps below to add image to SPI NAND Flash:

- 1. Select the "SPI NAND" type, which will not list the pre-burned images in the SPI NAND Flash ROM.
- 2. Fill in the image information:
 - Image Name: Browse the image file
 - **Image Type**: Select the image type (only one type can be selected)
 - Image execute address: Enter image execute address. Only is Loader Type is vaild.
 - Image start offset: Enter image start offset.
- 3. Click "Program".
- 4. Wait for progress bar to be finished.
- 5. After "Program" the image, click the "**Verify**" button to read back the image data to make sure the burning status.

019/01/30-V12 noose type :	SPI NAND	1	DDR Init	: <u>N</u>	JC980DK61Y.ini-V1.0 Device Connected Re-Connect
SPI NAND	Туре	Start	End	Block	Parameters
env	ENV	0x80000	0xa0000	0x1	
u-boot	DATA	0x200000	0x830cb0 0x126ed4	0x32 0x2	Image Type: O Data
u-boot-spl	uBOOT	0x0	Oxce3	0x4	Image execute address : 0x 200 Image start offset : 0x 80000
					SPINAND flash parameter: User Defined
					👱 Program 🦄 Verify 🔔 Read 🐼 Erase
<	1×20000			>	4

Figure 5-2 SPI NAND - New Image

SPI NAND – u-boot spl

For the Linux system, Loader Type is used to boot the Linux kernel. Compile NUC980 U-Boot to get Main U-Boot and SPL U-Boot. The SPL U-Boot is a small binary, which will move Main U-Boot into DDR execution. The SPL U-Boot is only for NAND/SPI NAND boot. The default link address of SPL U-Boot is 0x200. For the details of Loader Type format, please refer to "*NUC980 NuWriter User Manual*" in the "Documents" directory.

iose type :	SPI NAND)	∼ DDR Ir	nit: NU	JC980DK61Y.ini-V1.0 Device Connected • Re-Connec
PI NAND Name u-boot-spl < Alignment : 1	Type uBOOT	Start 0x0	End Oxce3	Block 0x4	Parameters Image Name : u-boot-spl Image Type : ○ Data ○ Environment ● Loader ○ Pack Image execute address : 0x 200 Image start offset : 0x 0 SPINAND flash parameter: □ User Defined Program ^{IM} Verify <u>A</u> Read II Erase Image Start offset : 0x 0

Figure 5-3 SPI NAND – u-boot spl

SPI NAND – u-boot

For the Linux system, Loader Type is used to boot the Linux kernel. Compile NUC980 U-Boot to get Main U-Boot and SPL U-Boot. The Main U-Boot is a fully featured version of U-Boot. In this case, the Main U-Boot needs to set the address at 0x100000 address.

ioose type : SPI NAND —	SPI NANE) `	/ DDR Init	: NU	JC980DK61Y.ini-V1.0 Device Connected • Re-Conne
Name u-boot u-boot-spl	Type DATA uBOOT	Start 0x100000 0x0	End 0x126ed4 0xce3	Block 0x2 0x4	Parameters Image Name : u-boot Image Type : Data Environment Loader Pack Image execute address : 0x 200 Image start offset : 0x 100000 SPINAND flash parameter: User Defined Yerify Read Erase
<	0x20000			>	

Figure 5-4 SPI NAND – u-boot

SPI NAND – 980uimage

Set the main image of data type into SPI NAND Flash in the specified address based on the value of image start offset (aligned on block size boundary, block size is based on SPI NAND specifications). If the image start offset is 0x200000, it means that the image of data is downloaded into SPI NAND Flash in the 0x200000 address.

2019/01/30-V12 Choose type :	2 SPI NANE) \	/ DDR Init	: NU	JC980DK61Y.ini-V1.0 Device Connected • Re-Connect
SPI NAND Name 980uimage u-boot u-boot-spl	Type DATA DATA uBOOT	Start 0x200000 0x100000 0x0	End 0x830cb0 0x126ed4 0xce3	Block 0x32 0x2 0x4	Parameters Image Name : 980uimage Image Type : Data Environment Loader Pack Image execute address : 0x 200 Image start offset : 0x 20000 SPINIAND flock parameter: User Defined
< Alignment : C)×20000			>	Program Verify Read Erase

Figure 5-5 SPI NAND – 980uimage

SPI NAND – environment

Loader Type is used to set uboot environment variables, the image of environment type into SPI NAND Flash in the specified address. U-Boot reads environment variables file to set the environment. If the image start offset is 0x80000, it means that the image of data is downloaded into SPI NAND Flash in the 0x80000 address.

Parameters Block Image Name : env 0x1 0x32 Image Type : O Data Environment O Loader O Pack
Parameters Block Image Name : env Ox1 0x32 Image Type : O Data Environment O Loader O Pack
0x32 Image Type : O Data
0x2
0x4 Image execute address : 0x 200
Image start offset : 0x 80000
SPINAND flash parameter: User Defined
👤 🛃 Program 🖌 🍫 Verify 主 Read 🛛 🕰 Erase
Image start offset : 0x 80000 SPINAND flash parameter: User Defined

Figure 5-6 SPI NAND – Environment

For more details of NuWriter tool, please refer to "*NUC980 NuWriter User Manual*" in the "Documents" directory.

nuvoTon

6 NUMAKER-LORAG915/LORAG868-NUC980 SCHEMATICS

6.1 Block Diagram Schematic

Figure 6-1 shows the Block diagram Schematic.

Figure 6-1 Block Diagram Schematic

6.2 GPIO List Schematic

Figure 6-2 shows the GPIO list schematic.

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			·	· · · · · · · · · · · · · · · · · · ·
PIN FUNCTION PIN FUN	NCTION PIN FUNCTION	PIN FUNCTION	PIN FUNCTION	PIN FUNCTION	PIN FUNCTION
PAO I2CO_SDA PBO NC	PC0 SX1308_RESI	IPD2 QSPI0_SSO	PE0 RMII0_RXERR	PF0 eMMC1_CMD	PG0 CFG[0]
PA1 I2C0_SCL PB1 NC	PC1 GPS_RESET	PD3 QSPI0_CLK	PE1 RMIIO_CRSDV	SD1_CLK PF1 eMMC1_CLK	PG1 CFG[1]
PA2 NC PB2 NC	PC2 GPS_STANDE	PD4 QSPI0_DO	PE2 RMII0_RXD1	PF2 SD1_DATA0 PF2 eMMC1_DATA0	PG3 CFG[3]
PA3 NC PB3 NC	PC3 VCAP0_CLKO	PD5 QSPI0_DI	PE3 RMIIO_RXDO	PF3 SD1_DATA1 eMMC1_DATA1	PG5 CFG[5]
PA4 NC NC	PC4 VCAP0_PCLK	PD6 QSPI0_D2	PE4 RMIIO_REFCLK	PF4 SD1_DATA2 eMMC1_DATA2	PG6 NC
PA5 NC PB4	PC5 VCAP0_HSYN	C PD7 QSPI0_D3	PE5 RMIIO_TXEN	PF5 eMMC1_DATA3	PG7 NC
PA6 LED_G PB5 I2C2	_SCL PC6 VCAP0_VSYN	C PD8 SPI0_SSO	PE6 RMIIO_TXD1	PF6 SD1_nCD	
PA7 NC PB6 NC	PC7 VCAP0_FIEL	PD9 SPI0_CLK	PE7 RMII0_TXD0	PF7 NC	PG8 CFG[8]
PA8 UART2_RTS	PC8 VCAP0_DATA	0 PD10 SPI0_DO	PES RMIIO_MDIO	PF8 UART1_RTS	PG9 CFG[9] JTAG0 TDO
PA9 UART2_RXD PB7 I2C2	SDA PC9 VCAP0_DATA:	PD11 SPI0 DI	PE9 RMIIO_MDC	PF9 UART1_RXD	PG11
PA10 PA10 PB8 LED_1	Y PC10 VCAP0_DATA:	}	PE10 Keyl	PF10 UART1_TXD	PG12 JTAG0_TCK
PA11 NC PB13 LED_1	R PC11 VCAP0_DATA	BD12 UART4_TXD	PE11 USB0_VBUSVLD	PF11 UART0_RXD	JTAG0_TMS
PA12 NC	PC12 VCAP0_DATA	4 PD13 UART4_RXD	PE12 Key2	PF12 UART0_TXD	
	PC13 VCAP0_DATA	PD14 I2C3 SCL			PG14 JTAG0_TDI
	PC14 VCAP0_DATA	6 PD15 I2C3 SDA			
	PC15 VCAP0_DATA				PG15 JTAG0_NTRST
			nu	oTon Techno	logy Corp.
			N N	K-LGNUC980	have
			A G	PIO List	Rev 1.
L			Date. Tuesday	r, may 12, 2020 SI	ee. 2 01 13

Figure 6-2 GPIO List Schematic

6.3 Power Schematic

Figure 6-3 shows the power Schematic.

Figure 6-3 Power Schematic

6.4 NUC980DK Schematic

Figure 6-4 shows the NUC980DK schematic.

Figure 6-4 NUC980DK Schematic

6.5 **Power Filter Schematic**

Figure 6-5 shows the power filter schematic.

Figure 6-5 Power Filter Schematic

6.6 Configure Schematic

Figure 6-6 shows the configure schematic.

Figure 6-6 Configure Schematic

6.7 NUC123ZD4AN0 Schematic

Figure 6-7 shows the NUC123ZD4AN0 schematic.

Figure 6-7 NUC123ZD4AN0 Schematic

6.8 Memory Schematic

Figure 6-8 shows the memory schematic.

Figure 6-8 Memory Schematic

6.9 RMII_PE Schematic

Figure 6-9 shows the RMII_PE schematic.

Figure 6-9 RMII_PE Schematic

6.10 RAK Sensor Connecter Schematic

Figure 6-10 shows the RAK sensor connector schematic.

Figure 6-10 RAK Sensor Connecter Schematic

6.11 SD1/eMMC1 Schematic

Figure 6-11 shows the SD1/eMMC1 schematic.

Figure 6-11 SD1/eMMC1 Schematic

6.12 RS485 Schematic

Figure 6-12 shows the RS485 schematic.

Figure 6-12 RS485 Schematic

6.13 USB Schematic

Figure 6-13 shows the USB schematic.

Figure 6-13 USB Schematic

6.14 PCB Placement

Figure 6-14 shows the front PCB placement.

Figure 6-14 Front PCB Placement

Figure 6-15 Back PCB Placement

7 REVISION HISTORY

Date	Revision	Dest	siption
2020.10.23	1.00	1.	Initial version

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.