
      

 

Sep. 07, 2021 Page 1 of 21 Rev 1.00 

M030G Series 

 

Example Code Introduction for 32-bit NuMicro®  Family 

 

 

 

Information 

Application 
This example code uses software TX and hardware RX solution to 
implement Manchester codec function. 

BSP Version M030G BSP CMSIS V3.01.000 

Hardware M031_GPON_GFN33_NU_AUTO Module 

 

 

 

 

 

 

 

 

 

 

 

 

 

The information described in this document is the exclusive intellectual property of 
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. 

 

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based 
system design. Nuvoton assumes no responsibility for errors or omissions. 

All data and specifications are subject to change without notice. 

 

For additional information or questions, please contact: Nuvoton Technology Corporation.  

www.nuvoton.com  

M031G Manchester Codec Software Solution 

http://www.nuvoton.com/


      

 

Sep. 07, 2021 Page 2 of 21 Rev 1.00 

M030G Series 

1 Overview 

In 5G GPON standard, the China Mobile does not send the IDLE pattern between two frames. 
However, the M031G Manchester codec needs to use the IDLE pattern for sending and 
receiving frames. To solve this problem, this sample provides an workaround solution to comply 
with the China Mobile 5G GPON requirements. 
 

1.1 Principle  

In the M031G Manchester hardware codec, since the Manchester TX sends the IDLE pattern 
in the beginning of each frame, it is replaced by another pure software mechanism in this 
sample. The mechanism is implemented by Timer triggering two different PDMA channels to 
make the TX pin output High and Low levels, respectively. Specifically, if the TX signal needs 
to be modulated with frequency modulation, this sample also demonstrates how to generate 
the corresponding sinusoidal waveform. 
 
The M031G Manchester RX decoder needs the IDLE pattern before decoding each frame. But 
the China Mobile standard sends the consecutive frames without the IDLE pattern. To solve 
this issue, while receiving RX signal from the assigned GPIO pin, the first byte of several 
Preamble patterns is replaced by one pseudo IDLE pattern, and the modified frame is outputted 
to another GPIO pin (RXm). At the same time, the RXm pin is connected to the real M031G 
Manchester RX pin. Since the reformed RX signal includes the IDLE pattern in the beginning 
of each frame, the M031G Manchester decoder can decode it by hardware.  
 

1.1.1 Software TX  

 
This section describes how to generate the TX signal by software. The procedure is listed 
below.  
 

1. Prepare the sinusoidal waveform table for the DAC0 if the TX frequency modulation is 

necessary. 

 The table can be created by the following statement. 

/* prepare sinusoidal waveform data table for the DAC0 */ 

for (i=0; i<SINE_SAMPLE; i++) 

{ 

    /* Add 1.0 to offset sine result from [-1, 1] to [0, 2], 

       and divided with 2.0 to compress to [0, 1] */ 

    g_sineBuf[i] = (uint16_t)(((sin((double)(((i+1) * PI) /  

                           (SINE_SAMPLE/2))) + 1.0) / 2.0) * 0xFFF); 

} 

 



      

 

Sep. 07, 2021 Page 3 of 21 Rev 1.00 

M030G Series 

2. Prepare the encoded buffer. 

 Before sending the raw data buffer, it must be encoded to the desired Manchester 

format, including G.E. Thomas (110, 001) or IEEE 802.3 (010, 101). In 

this sample code, G.E. Thomas is selected. 

 

 
Figure 1-1  Manchester Encoded Format 

 
 

To generate the TX signal in the dedicated GPIO pin, each bit of the raw data buffer 
is encoded to one two-byte pattern. This two-byte pattern can trigger two different 
PDMA channels to generate High or Low level on the TX pin, respectively. In 
addition, if the TX frequency modulation is required, the PDMA channel can also 
trigger DAC0 to generate sine waveform when the TX is in High or Low state. 
 

/* encode raw data buffer */ 

void Encode_Buf_Fill(uint8_t *u8ManchTxBuf, uint8_t u8Id) 
{ 
    for(i=0; i<FRAME_LENGTH; i++) 
    { 
        for(j=0; j<8; j++) 
        { 
            u8Dat = u8ManchTxBuf[i] >> (7-j); 
            if(u8Dat & 0x1) /* 1 is encode to 10 */ 
            { 
                g_u8EncodeBuf[u8Id][u16BitCount] = ENCODE_TX_HIGH; 
                u16BitCount++; 
                g_u8EncodeBuf[u8Id][u16BitCount] = ENCODE_TX_LOW; 
                u16BitCount++; 
            } 
            else            /* 0 is encode to 01 */ 
            {    
                g_u8EncodeBuf[u8Id][u16BitCount] = ENCODE_TX_LOW; 
                u16BitCount++; 
                g_u8EncodeBuf[u8Id][u16BitCount] = ENCODE_TX_HIGH; 
                u16BitCount++; 
            } 



      

 

Sep. 07, 2021 Page 4 of 21 Rev 1.00 

M030G Series 

        } 
    } 
} 

 

3. Set PDMA for the TX and DAC0 output. 

 Based on different PDMA channels, the TX pin can output High or Low level, and 

DAC0 can generate the sine waveform at the same time if requred. Several scatter-

gather tables for different PDMA channels have been set up in the function 

“PDMA_Encode_Init()” as described below. 

 

a. PDMA_ENCODE_CH0 

Two scatter-gather tables are listed for PDMA_ENCODE_CH0. Based on the 

content of g_u8EncodeBuf[], the PDMA_SWREQ register will be written 0x02 or 

0x04 to trigger PDMA_ENCODE_CH1 or PDMA_ENCODE_CH2, respectively. 

 

void PDMA_Encode_Init(void) 
{    

… 
 

    /* Enable PDMA channels */ 
    PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH0); 
    PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH0,  
    PDMA_TMR1, TRUE, (uint32_t)&PDMA_TX0_DESC[0]); 
   
    PDMA_TX0_DESC[0].ctl = ((1024 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_8 |    
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_TX0_DESC[0].src = (uint32_t)g_u8EncodeBuf[0]; 
    PDMA_TX0_DESC[0].dest = (uint32_t)&PDMA->SWREQ; 
    PDMA_TX0_DESC[0].offset = (uint32_t)&PDMA_TX0_DESC[1] –  
    (PDMA->SCATBA); 
 
    PDMA_TX0_DESC[1].ctl = ((1024 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_8 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_TX0_DESC[1].src = (uint32_t)g_u8EncodeBuf[1]; 
    PDMA_TX0_DESC[1].dest = (uint32_t)&PDMA->SWREQ; 
    PDMA_TX0_DESC[1].offset = (uint32_t)&PDMA_TX0_DESC[0] –  
    (PDMA->SCATBA);   //link to first description 
     
    … 
} 

 



      

 

Sep. 07, 2021 Page 5 of 21 Rev 1.00 

M030G Series 

b. PDMA_ENCODE_CH1 

If the DAC0 is assigned to generate sine waveform while TX is in High state, two 

scatter-gather tables are set up for PDMA_ENCODE_CH1. The first table enables 

the DAC0 auto-sine function, and DAC0 will generate the sine waveform on DAC0 

output pin. The second table can make the TX output High state. However, if the 

DAC0 is assigned to generate sine waveform while TX is in Low state, three scatter-

gather tables are set up for PDMA_ENCODE_CH1. The first table disables the 

DAC0 auto-sine function and the second table sets the DAC0 to the assigned value 

(0x000 ~ 0xFFF). Then, the third table sets the TX output to High state. 

 

void PDMA_Encode_Init(void) 
{    
    … 
     
#ifdef OPT_AUTO_SINE_HIGH     
    /* Enable PDMA channels */ 
    PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH1); 
    PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH1,   
    PDMA_MEM, TRUE, (uint32_t)&PDMA_TX1_DESC[0]); 
     
    PDMA_TX1_DESC[0].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 | 
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_BURST |  
    PDMA_OP_SCATTER; 
 
    PDMA_TX1_DESC[0].src = (uint32_t)&g_u32DacEnable; 
    PDMA_TX1_DESC[0].dest = (uint32_t)&DAC0->ADGCTL; 
    PDMA_TX1_DESC[0].offset = (uint32_t)&PDMA_TX1_DESC[1] –  
    (PDMA->SCATBA); 
 
    PDMA_TX1_DESC[1].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_TX1_DESC[1].src = (uint32_t)&g_u32PinHigh; 
    PDMA_TX1_DESC[1].dest = (uint32_t)&ENCODE_TXD; 
    PDMA_TX1_DESC[1].offset = (uint32_t)&PDMA_TX1_DESC[0] –  
    (PDMA->SCATBA);   //link to first description 
    … 
     
#else 
    /* Enable PDMA channels */ 
    PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH1); 
     
    PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH1,  
    PDMA_MEM, TRUE, (uint32_t)&PDMA_TX1_DESC[0]); 
     



      

 

Sep. 07, 2021 Page 6 of 21 Rev 1.00 

M030G Series 

    PDMA_TX1_DESC[0].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_BURST |      
    PDMA_OP_SCATTER; 
    PDMA_TX1_DESC[0].src = (uint32_t)&g_u32DacDisable; 
    PDMA_TX1_DESC[0].dest = (uint32_t)&DAC0->ADGCTL; 
    PDMA_TX1_DESC[0].offset = (uint32_t)&PDMA_TX1_DESC[1] –  
    (PDMA->SCATBA); 
 
    PDMA_TX1_DESC[1].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_BURST |     
    PDMA_OP_SCATTER; 
    PDMA_TX1_DESC[1].src = (uint32_t)&g_u32DacData; 
    PDMA_TX1_DESC[1].dest = (uint32_t)&DAC0->DAT; 
    PDMA_TX1_DESC[1].offset = (uint32_t)&PDMA_TX1_DESC[2] –  
    (PDMA->SCATBA);   //link to first description 
     
    PDMA_TX1_DESC[2].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_TX1_DESC[2].src = (uint32_t)&g_u32PinHigh; 
    PDMA_TX1_DESC[2].dest = (uint32_t)&ENCODE_TXD; 
    PDMA_TX1_DESC[2].offset = (uint32_t)&PDMA_TX1_DESC[0] -   
    (PDMA->SCATBA);   //link to first description 
    … 
     
#endif 
    … 
} 

 

c. PDMA_ENCODE_CH2 

If the DAC0 is assigned to generate sine waveform while TX is in High state, three 

scatter-gather tables are set up for PDMA_ENCODE_CH2. The first table disables 

the DAC0 auto-sine function and the second table set the DAC0 to the assigned 

value (0x000 ~ 0xFFF). Then, the third table sets the TX output to Low state. 

However, If the DAC0 is assigned to generate sine waveform while TX is in Low 

state, two scatter-gather tables are set up for PDMA_ENCODE_CH2. The first table 

enables the DAC0 auto-sine function, and the DAC0 will generate the sine 

waveform on DAC0 output pin. The second tables can make the TX output Low 

state. 

 

void PDMA_Encode_Init(void) 
{    
    … 



      

 

Sep. 07, 2021 Page 7 of 21 Rev 1.00 

M030G Series 

     
#ifdef OPT_AUTO_SINE_HIGH     
    … 
     
    /* Enable PDMA channels */ 
    PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH2); 
     
    PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH2,   
    PDMA_MEM, TRUE, (uint32_t)&PDMA_TX2_DESC[0]); 
     
    PDMA_TX2_DESC[0].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_BURST |  
    PDMA_OP_SCATTER; 
    PDMA_TX2_DESC[0].src = (uint32_t)&g_u32DacDisable; 
    PDMA_TX2_DESC[0].dest = (uint32_t)&DAC0->ADGCTL; 
    PDMA_TX2_DESC[0].offset = (uint32_t)&PDMA_TX2_DESC[1] –  
    (PDMA->SCATBA); 
 
    PDMA_TX2_DESC[1].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_BURST |  
    PDMA_OP_SCATTER; 
    PDMA_TX2_DESC[1].src = (uint32_t)&g_u32DacData; 
    PDMA_TX2_DESC[1].dest = (uint32_t)&DAC0->DAT; 
    PDMA_TX2_DESC[1].offset = (uint32_t)&PDMA_TX2_DESC[2] -  
    (PDMA->SCATBA);   //link to first description 
     
    PDMA_TX2_DESC[2].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_TX2_DESC[2].src = (uint32_t)&g_u32PinLow; 
    PDMA_TX2_DESC[2].dest = (uint32_t)&ENCODE_TXD; 
    PDMA_TX2_DESC[2].offset = (uint32_t)&PDMA_TX2_DESC[0] –  
    (PDMA->SCATBA);   //link to first description 
#else 
    … 
     
    /* Enable PDMA channels */ 
    PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH2); 
    PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH2,  
    PDMA_MEM, TRUE, (uint32_t)&PDMA_TX2_DESC[0]); 
     
    PDMA_TX2_DESC[0].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_BURST |  
    PDMA_OP_SCATTER; 
    PDMA_TX2_DESC[0].src = (uint32_t)&g_u32DacEnable; 
    PDMA_TX2_DESC[0].dest = (uint32_t)&DAC0->ADGCTL; 



      

 

Sep. 07, 2021 Page 8 of 21 Rev 1.00 

M030G Series 

    PDMA_TX2_DESC[0].offset = (uint32_t)&PDMA_TX2_DESC[1] –  
    (PDMA->SCATBA); 
 
    PDMA_TX2_DESC[1].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_TX2_DESC[1].src = (uint32_t)&g_u32PinLow; 
    PDMA_TX2_DESC[1].dest = (uint32_t)&ENCODE_TXD; 
    PDMA_TX2_DESC[1].offset = (uint32_t)&PDMA_TX2_DESC[0] –  
    (PDMA->SCATBA);   //link to first description 
#endif 
} 

 

1.1.2 Hardware RX  

 
This section describes how to decode RX signal by the M031G Manchester hardware decoder. 
As described in Section 1.1, the M031G Manchester decoder needs the IDLE pattern in the 
beginning of each frame. Therefore, the received RX signal needs to be reformed to another 
RXm with the IDLE pattern. In this sample code, the RX signal is received from PB15 pin and 
reformed to another RXm (PB5). In Figure 1-2, the IDLE pattern 0xFF is inserted between two 
frames. 
 

 

 

 

 

 
 

 

 

 

 

Figure 1-2  RX and Reformed RX 
 
 
At the same time, the reformed RXm is connected to the real Manchester RX pin, and the 
Manchester hardware decoder can decode the RXm as shown in Figure 1-3. 
 

0xFF inserted, PB5 in High state 

Preamble byte 0x7E detection 



      

 

Sep. 07, 2021 Page 9 of 21 Rev 1.00 

M030G Series 

 
Figure 1-3  RXm Loopback to Hardware RX 

 
 
The procedure to decode the RX is listed below.  
 

1. Decode the first Preamble byte by software. 

 In this sample code, the bit stream is encoded by G.E. Thomas format in 2 kHz. 

The M031G Timer0 capturing function with 1 MHz time base is used to decode the 

first byte of Preamble byte (0x7E).  

 

 To begin searching the pattern 0x7E, the Timer0 is set to monitor the rising-edge 

of external input in the beginning. Whenever the rising-edge of RX has been 

detected, the Timer0 capture function is changed to detect the falling-edge. When 

the falling-edge is detected later, the Timer0 count value that is captured by the 

falling-edge will be checked if the captured value is beyond 1,000+/-100. If the 

value does not exceed 1,000+/-100, keep the Timer0 capture function on falling-

edge detection. Otherwise, ignore the current detection and return to the first rising-

edge detection again.   

 

 If the captured values of six continuous falling-edges do not exceed 1,000+/-100, 

it means that 0x7E or 0x7F pattern has been detected. To confirm if 0x7E has been 

detected, the Timer0 capture function is changed to detect the rising-edge. If the 

captured value of next rising-edge is still in 1,000+/-100, it is confirmed 0x7E 

detected. 

 

 Figure 1-4 indicates that three continuous differences are captured by one rising-

edge and three falling-edge can be between 1,000+/-100 and means 0x7# to be 



      

 

Sep. 07, 2021 Page 10 of 21 Rev 1.00 

M030G Series 

detected. Specifically, the RXm pin is kept at High state before 0x7E pattern is 

detected as shown in Figure 1-2. 

 

 

Figure 1-4  Preamble Byte Detection 
 
 

/* For detecting Preamble pattern 0x7E by software */ 
void Manch_Receive_By_Software(uint32_t u32Time) 
{ 
    /* Check if the first rising-edge detected */ 
    if(g_u8RxStatus == 0) 
    { 
        /* Change to detect falling-edge */ 
        Timer_Decode_Capture_Set(TIMER_CAPTURE_FALLING_EDGE); 
        g_u8RxStatus = 1; 
    } 
    else if((g_u8RxStatus==1) || (g_u8RxStatus==2) || (g_u8RxStatus==3) 

|| (g_u8RxStatus==4) || (g_u8RxStatus==5) || g_u8RxStatus==6)) 
    { 
        /* Check the range of deviation */ 
        if((u32Time>(TIME_2T-TIME_OFFSET)) &&  
           (u32Time<(TIME_2T+TIME_OFFSET)))  
        { 
            /* If the deviation of six falling-edge detections less than 100  
               (TIME_OFFSET), change to rising-edge detection */ 
            if(g_u8RxStatus == 6) 
                Timer_Decode_Capture_Set(TIMER_CAPTURE 
                _RISING_EDGE); 
            g_u8RxStatus++; 
        } 
        else 
        { 
            Timer_Decode_Capture_Set(TIMER_CAPTURE_ 
            RISING_EDGE); 
            g_u8RxStatus = 0; 
        } 
    } 
    else if(g_u8RxStatus == 7) 
    { 
        /* If consecutive seven deviations are less than 100,  
           It means that 0x7E is detected */ 
        if((u32Time>(TIME_2T-TIME_OFFSET)) &&  



      

 

Sep. 07, 2021 Page 11 of 21 Rev 1.00 

M030G Series 

           (u32Time<(TIME_2T+TIME_OFFSET))) 
        { 
            g_u8RxStatus = 0; 
            NVIC_DisableIRQ(TMR0_IRQn); 
            TIMER_Start(TIMER2);                
            Timer_Decode_Capture_Set(TIMER_CAPTURE_FALLING 
            _AND_RISING_EDGE); 
            Timer_PDMA_Enable(); 
        } 
        else 
        { 
            Timer_Decode_Capture_Set(TIMER_CAPTURE_ 
            RISING_EDGE); 
            g_u8RxStatus = 0; 
        } 
    } 
} 

 

2. Duplicate RX signal to RXm. 

 After the first Preamble byte 0x7E is detected, the PDMA_DECODE_CH0 is 

enabled. Specifically, the PDMA_DECODE_CH0 is triggered by Timer0 capture 

RX rising-edge and falling-edge, and it can duplicate the RX signal to the RXm. 

Two scatter-gather tables are set up for the PDMA_DECODE_CH0 as listed below. 

 

void PDMA_Rx_Init(void) 
{ 
    /* Enable PDMA channels */ 
    PDMA_Open(PDMA, 1<<PDMA_DECODE_CH0); 
    PDMA_SetTransferMode(PDMA, PDMA_DECODE_CH0,  
    PDMA_TMR0, TRUE, (uint32_t)&PDMA_RX0_DESC[0]); 
     
    PDMA_RX0_DESC[0].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_FIX | PDMA_DAR_FIX | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_RX0_DESC[0].src = (uint32_t)&g_u32DecodeTxBuf[0]; 
    PDMA_RX0_DESC[0].dest = (uint32_t)&DECODE_TXD; 
    PDMA_RX0_DESC[0].offset = (uint32_t)&PDMA_RX0_DESC[1] –  
    (PDMA->SCATBA); 
 
    PDMA_RX0_DESC[1].ctl = ((1 - 1) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |  
    PDMA_SAR_FIX | PDMA_DAR_FIX | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_RX0_DESC[1].src = (uint32_t)&g_u32DecodeTxBuf[1]; 
    PDMA_RX0_DESC[1].dest = (uint32_t)&DECODE_TXD; 
    PDMA_RX0_DESC[1].offset = (uint32_t)&PDMA_RX0_DESC[0] –  
    (PDMA->SCATBA);   //link to first description 



      

 

Sep. 07, 2021 Page 12 of 21 Rev 1.00 

M030G Series 

    … 
 
} 

 

3. Set PDMA for Manchester hardware decoder. 

 The PDMA_DECODE_CH1 is for Manchester hardware decoder and two scatter-

gather tables are set. Specifically, the hardware decoder is always enabled and 

can only decode the frame with the IDLE pattern in the beginning as shown in 

Figure 1-2. 

 

void PDMA_Rx_Init(void) 
{ 
    … 
     
    /* Disable RX DMA */ 
    MANCH_DISABLE_RX_DMA(MANCH); 
        
    /* MANCH RX PDMA channel configuration */ 
    PDMA_Open(PDMA, 1<<PDMA_DECODE_CH1); 
    PDMA_SetTransferMode(PDMA, PDMA_DECODE_CH1,  
    PDMA_MANCH_RX, TRUE, (uint32_t)&PDMA_RX1_DESC[0]); 
     
    PDMA_RX1_DESC[0].ctl = ((FRAME_LENGTH - 2) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_8 |  
    PDMA_SAR_FIX | PDMA_DAR_INC | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_RX1_DESC[0].src = (uint32_t)&MANCH->RXDAT; 
    PDMA_RX1_DESC[0].dest = (uint32_t)g_u8ManchRxBuf[0]; 
    PDMA_RX1_DESC[0].offset = (uint32_t)&PDMA_RX1_DESC[1] –  
    (PDMA->SCATBA); 
 
    PDMA_RX1_DESC[1].ctl = ((FRAME_LENGTH - 2) <<  
    PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_8 |  
    PDMA_SAR_FIX | PDMA_DAR_INC | PDMA_REQ_SINGLE |  
    PDMA_OP_SCATTER; 
    PDMA_RX1_DESC[1].src = (uint32_t)&MANCH->RXDAT; 
    PDMA_RX1_DESC[1].dest = (uint32_t)g_u8ManchRxBuf[1]; 
    PDMA_RX1_DESC[1].offset = (uint32_t)&PDMA_RX1_DESC[0] –  
    (PDMA->SCATBA);   //link to first description 
     
    /* Enable RX DMA */ 
    MANCH_ENABLE_RX_DMA(MANCH);     
} 

 

 

1.1.3 CRC Checking  

 



      

 

Sep. 07, 2021 Page 13 of 21 Rev 1.00 

M030G Series 

In the M031G Manchester decoder, there is no hardware mechanism to do the CRC checking. 
After receiving the input frame from the dedicated RX pin, the CRC can be checked by the 
M031G CRC. This sample code provides two selections for the user to do the CRC checking, 
as described below. 
 

1. CRC checking by PDMA 

int check_crc(uint8_t* buf) 
{ 
    … 
     
    /* Open Channel PDMA_DECODE_CRC_CH */ 
    PDMA_Open(PDMA,1 << PDMA_DECODE_CRC_CH); 
 
    PDMA_SetTransferCnt(PDMA, PDMA_DECODE_CRC_CH,  
    PDMA_WIDTH_8, MSG_LENGTH); 
    PDMA_SetTransferAddr(PDMA, PDMA_DECODE_CRC_CH, (uint32_t)buf,  
    PDMA_SAR_INC, (uint32_t)&CRC->DAT, PDMA_DAR_FIX); 
    PDMA_SetTransferMode(PDMA, PDMA_DECODE_CRC_CH, DMA_MEM,  
    FALSE, 0); 
    PDMA_SetBurstType(PDMA, PDMA_DECODE_CRC_CH, 
    PDMA_REQ_BURST, PDMA_BURST_1); 
 
    /* Generate a software request to trigger transfer with PDMA */ 
    PDMA_Trigger(PDMA, PDMA_DECODE_CRC_CH); 
 
    /* Wait transfer done */ 
    while(!((PDMA_GET_TD_STS(PDMA)&(PDMA_TDSTS_TDIF0_Msk<<PD 
    MA_DECODE_CRC_CH)))); 
 
    /* Clear transfer done flag */ 
    PDMA_CLR_TD_FLAG(PDMA, 
    (PDMA_TDSTS_TDIF0_Msk<<PDMA_DECODE_CRC_CH)); 
 
    /* Get CRC-8 checksum value */ 
    checksum = CRC_GetChecksum(); 
     
    … 
} 

 

 

2. CRC checking by no PDMA 

int check_crc(uint8_t* buf) 
{ 
    … 
     
    /* Start to calculate CRC checksum in buffer */ 
    for(i = 0; i < MSG_BEFORE_CRC; i++) 
    { 
        CRC_WRITE_DATA(buf[j]); 



      

 

Sep. 07, 2021 Page 14 of 21 Rev 1.00 

M030G Series 

  j++; 
    } 
  
 /* Store checksum in buffer */ 
 buf_checksum = buf[j]; 
 j++; 
  
    /* Continue to calculate CRC checksum in buffer */ 
    for(i = 0; i < MSG_LENGTH; i++) 
    { 
        CRC_WRITE_DATA(buf[j]); 
  j++; 
    } 
  
    /* Get CRC-8 checksum value */ 
    checksum = CRC_GetChecksum(); 
     
    … 
} 

 

1.2 Operation Process  

Before doing the test, the related hardware connection must be ready. This sample can be 
verified by self-loopback test or full duplex test between two M031G evaluation boards. When 
this sample code begins to be executed, the console can display the message as shown in 
Figure 1-5. 
 

 
Figure 1-5  Console Message 

 



      

 

Sep. 07, 2021 Page 15 of 21 Rev 1.00 

M030G Series 

2 Demo Result 

From the test result, the received frame size is only 63-byte. This reason is that one Preamble 
byte is served as the IDLE pattern, and the hardware decoder does not receive it. This sample 
also provides another option to copy the received buffer to another rearranged 64-byte buffer, 
g_u8ManchRxBuf_ReArranged[].  
 

 
Figure 2-1  Output Result 



      

 

Sep. 07, 2021 Page 16 of 21 Rev 1.00 

M030G Series 

3 Software and Hardware Requirements 

3.1 Software Requirements 

 BSP version 

 M030G BSP CMSIS V3.01.000 

 IDE version 

 Keil uVersion 5.27 

3.2 Hardware Requirements 

 M031_GPON_GFN33_NU_AUTO Module 

  



      

 

Sep. 07, 2021 Page 17 of 21 Rev 1.00 

M030G Series 

 Pins Connection 

 
Figure 3-1  Pins Connection 

 



      

 

Sep. 07, 2021 Page 18 of 21 Rev 1.00 

M030G Series 

4 Directory Information 

The directory structure is shown below. 

 M030G BSP 

 Library Sample code header and source files 

 CMSIS Cortex®  Microcontroller Software Interface 
Standard (CMSIS) by Arm®  Corp. 

 Device CMSIS compliant device header file 

 StdDriver All peripheral driver header and source 
files 

 SampleCode  

 MANCH_TXRXLoopback_ 

NoIdlePatternInFrames 

Source files of example code 

 

Figure 4-1  Directory Structure 
 



      

 

Sep. 07, 2021 Page 19 of 21 Rev 1.00 

M030G Series 

5 Example Code Execution 

1. Browse the sample code folder as described in the Directory Information section and 

double-click MANCH_TXRXLoopback_NoIdlePatternInFrames.uvproj. 

2. Enter Keil compile mode. 

 Build 

 Download 

 Start/Stop debug session 

3. Enter debug mode. 

 Run 

  



      

 

Sep. 07, 2021 Page 20 of 21 Rev 1.00 

M030G Series 

6 Revision History 

Date Revision Description 

2021.09.07 1.00 1. Initially issued. 

 

  



      

 

Sep. 07, 2021 Page 21 of 21 Rev 1.00 

M030G Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important Notice 
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction 
or failure of which may cause loss of human life, bodily injury or severe property damage. Such 
applications are deemed, “Insecure Usage”.  
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy 
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or 
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other 
applications intended to support or sustain life.   
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to 
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities 
thus incurred by Nuvoton. 
 

 
 


