NUVOTON MO030G Series

I MO031G Manchester Codec Software Solution

Example Code Introduction for 32-bit NuMicro® Family

Information
. This example code uses software TX and hardware RX solution to
Application . .
implement Manchester codec function.
BSP Version M030G BSP CMSIS V3.01.000
Hardware MO031_GPON_GFN33_NU_AUTO Module

The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Sep. 07, 2021 Page 1 of 21 Rev 1.00

http://www.nuvoton.com/

NUVOTON MO030G Series

1 Overview

In 5G GPON standard, the China Mobile does not send the IDLE pattern between two frames.
However, the M031G Manchester codec needs to use the IDLE pattern for sending and
receiving frames. To solve this problem, this sample provides an workaround solution to comply
with the China Mobile 5G GPON requirements.

1.1 Principle

In the MO31G Manchester hardware codec, since the Manchester TX sends the IDLE pattern
in the beginning of each frame, it is replaced by another pure software mechanism in this
sample. The mechanism is implemented by Timer triggering two different PDMA channels to
make the TX pin output High and Low levels, respectively. Specifically, if the TX signal needs
to be modulated with frequency modulation, this sample also demonstrates how to generate
the corresponding sinusoidal waveform.

The M031G Manchester RX decoder needs the IDLE pattern before decoding each frame. But
the China Mobile standard sends the consecutive frames without the IDLE pattern. To solve
this issue, while receiving RX signal from the assigned GPIO pin, the first byte of several
Preamble patterns is replaced by one pseudo IDLE pattern, and the modified frame is outputted
to another GPIO pin (RXm). At the same time, the RXm pin is connected to the real M031G
Manchester RX pin. Since the reformed RX signal includes the IDLE pattern in the beginning
of each frame, the M031G Manchester decoder can decode it by hardware.

1.1.1 Software TX

This section describes how to generate the TX signal by software. The procedure is listed
below.

1. Prepare the sinusoidal waveform table for the DACO if the TX frequency modulation is
necessary.
» The table can be created by the following statement.

[* prepare sinusoidal waveform data table for the DACO */
for (i=0; I<KSINE_SAMPLE; i++)
{
/* Add 1.0 to offset sine result from [-1, 1] to [0, 2],
and divided with 2.0 to compress to [0, 1] */
g_sineBuf[i] = (uint16_t)(((sin((double)(((i+1) * PI) /
(SINE_SAMPLE/2))) + 1.0) / 2.0) * OXFFF);

Sep. 07, 2021 Page 2 of 21 Rev 1.00

NUVOTON MO030G Series

2. Prepare the encoded buffer.
» Before sending the raw data buffer, it must be encoded to the desired Manchester
format, including G.E. Thomas (110, 0->01) or IEEE 802.3 (0>10, 1->01). In
this sample code, G.E. Thomas is selected.

clock | || [J[][]L! |
Data J
1 0o 1 0 O 1 1 1 0 0 1
Manchester T —L _L | —
Manchester | N Onrin e

Figure 1-1 Manchester Encoded Format

To generate the TX signal in the dedicated GPIO pin, each bit of the raw data buffer
is encoded to one two-byte pattern. This two-byte pattern can trigger two different
PDMA channels to generate High or Low level on the TX pin, respectively. In
addition, if the TX frequency modulation is required, the PDMA channel can also
trigger DACO to generate sine waveform when the TX is in High or Low state.

[* encode raw data buffer */
void Encode_Buf_Fill(uint8_t *u8ManchTxBuf, uint8_t u8ld)

for(i=0; i<FRAME_LENGTH; i++)
for(j=0; |<8; j++)
{

u8Dat = u8ManchTxBuf[i] >> (7-j);
if(lu8Dat & Ox1) /* 1 is encode to 10 */

g_u8EncodeBuf[u8Id][ul6BitCount] = ENCODE_TX_ HIGH;
ul6BitCount++;
g_u8EncodeBuf[u8Id][u16BitCount] = ENCODE_TX_LOW;
ul6BitCount++;

}

else /* 0 is encode to 01 */

{
g_u8EncodeBuf[u8Id][ul6BitCount] = ENCODE_TX_ LOW,
ul6BitCount++;
g_u8EncodeBuf[u8Id][u16BitCount] = ENCODE_TX_ HIGH;
ul6BitCount++;

Sep. 07, 2021 Page 3 of 21 Rev 1.00

NnuvoToN

MO030G Series

}

}
}

3. Set PDMA for the TX and DACO output.
> Based on different PDMA channels, the TX pin can output High or Low level, and
DACO can generate the sine waveform at the same time if requred. Several scatter-

gather tables for different PDMA channels have been set up in the function
‘PDMA_Encode_Init()” as described below.

a. PDMA_ENCODE_CHO
Two scatter-gather tables are listed for PDMA_ENCODE_CHO. Based on the
content of g_u8EncodeBuf[], the PDMA_SWREQ register will be written 0x02 or
0x04 to trigger PDMA_ENCODE_CH1 or PDMA_ENCODE_CH2, respectively.

void PDMA_Encode_ Init(void)
{

/* Enable PDMA channels */

PDMA_Open(PDMA, 1<<PDMA_ENCODE_CHO0);
PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CHO,
PDMA_TMR1, TRUE, (uint32_t)&PDMA_TX0_DESCIO0]);

PDMA_TX0_DESC[0].ctl = ((1024 - 1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_8 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER,;

PDMA_TX0_DESCJO0].src = (uint32_t)g_u8EncodeBuf[0];
PDMA_TX0_DESC|0].dest = (uint32_t)&PDMA->SWREQ;
PDMA_TX0_DESCI0].offset = (uint32_t)&PDMA_TX0_DESCJ[1] —
(PDMA->SCATBA);

PDMA_TX0_DESC[1].ctl = ((1024 - 1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_8 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER,;

PDMA_TX0_DESCI[1].src = (uint32_t)g_u8EncodeBuf[1];
PDMA_TX0_DESC[1].dest = (uint32_t)&PDMA->SWREQ;
PDMA_TX0_DESCI[1].offset = (uint32_t)&PDMA_TX0_DESC[0] —
(PDMA->SCATBA); //link to first description

Sep. 07, 2021

Page 4 of 21

Rev 1.00

NnuvoToN

b. PDMA_ENCODE_CH1
If the DACO is assigned to generate sine waveform while TX is in High state, two
scatter-gather tables are set up for PDMA_ENCODE_CHL1. The first table enables
the DACO auto-sine function, and DACO will generate the sine waveform on DACO
output pin. The second table can make the TX output High state. However, if the
DACO is assigned to generate sine waveform while TX is in Low state, three scatter-
gather tables are set up for PDMA_ENCODE_CH1. The first table disables the
DACO auto-sine function and the second table sets the DACO to the assigned value

(Ox000 ~ OXFFF). Then, the third table sets the TX output to High state.

Sep. 07, 2021

MO030G Series

void PDMA_Encode_ Init(void)

#ifdef OPT_AUTO_SINE_HIGH

/* Enable PDMA channels */

PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH]1);
PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH1,
PDMA_ MEM, TRUE, (uint32_t)&PDMA_TX1 DESCJO0]);

PDMA_TX1_DESC[0].ctl = (1 - 1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_BURST |
PDMA_OP_SCATTER;

PDMA_TX1_DESC|0].src = (uint32_t)&g_u32DacEnable;
PDMA_TX1_DESC][0].dest = (uint32_t)&DACO0->ADGCTL,;
PDMA_TX1_DESC]0].offset = (uint32_t)&PDMA_TX1_DESC[1] —
(PDMA->SCATBA);

PDMA_TX1_DESC[1].ctl = ((1 - 1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER,;

PDMA_TX1 DESCI1].src = (uint32_t)&g_u32PinHigh;
PDMA_TX1_DESC[1].dest = (uint32_t)&ENCODE_TXD;
PDMA_TX1_DESCI[1].offset = (uint32_t)&PDMA_TX1_DESC|0] —
(PDMA->SCATBA); /llink to first description

t#else

/* Enable PDMA channels */
PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH1);

PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH1,
PDMA_MEM, TRUE, (uint32_t)&PDMA_TX1_DESC|0]);

Page 5 of 21

Rev 1.00

NUVOTON MO030G Series

PDMA_TX1 DESC[O].ctl =((1-1) <<

PDMA _DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR _INC | PDMA_DAR_FIX | PDMA_REQ_BURST |
PDMA_OP_SCATTER,;

PDMA_TX1 DESC]O0].src = (uint32_t)&g_u32DacDisable;

PDMA _TX1 DESCJ0].dest = (uint32_t)&DACO0->ADGCTL;
PDMA_TX1_DESCJ[0].offset = (uint32_t)&PDMA_TX1_DESCI[1] —
(PDMA->SCATBA);

PDMA_TX1_DESC[1].ctl =((1-1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ BURST |
PDMA_OP_SCATTER;

PDMA _TX1 DESCJ[1].src = (uint32_t)&g_u32DacData;
PDMA_TX1_ DESCJ1].dest = (uint32_t)&DACO0->DAT,;
PDMA_TX1_DESC]J1].offset = (uint32_t)&PDMA_TX1_DESC[2] —
(PDMA->SCATBA); /llink to first description

PDMA_TX1 DESC[2].ctl =((1-1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER,;

PDMA_TX1_DESC]2].src = (uint32_t)&g_u32PinHigh;
PDMA_TX1_DESC|2].dest = (uint32_t)&ENCODE_TXD;
PDMA_TX1_DESC|2].offset = (uint32_t)&PDMA_TX1_ DESC[0] -
(PDMA->SCATBA); //link to first description

#endif
}

c. PDMA_ENCODE_CH?2

If the DACO is assigned to generate sine waveform while TX is in High state, three
scatter-gather tables are set up for PDMA_ENCODE_CH2. The first table disables
the DACO auto-sine function and the second table set the DACO to the assigned
value (0x000 ~ OxFFF). Then, the third table sets the TX output to Low state.
However, If the DACO is assigned to generate sine waveform while TX is in Low
state, two scatter-gather tables are set up for PDMA_ENCODE_CH2. The first table
enables the DACO auto-sine function, and the DACO will generate the sine
waveform on DACO output pin. The second tables can make the TX output Low
state.

void PDMA_Encode_Init(void)
{

Sep. 07, 2021 Page 6 of 21 Rev 1.00

NnuvoToN

MO030G Series

Sep. 07, 2021

#ifdef OPT_AUTO_SINE_HIGH

/* Enable PDMA channels */
PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH?2);

PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH2,
PDMA_MEM, TRUE, (uint32_t)&PDMA_TX2_DESCIO0]):

PDMA_TX2_DESCI0].ctl = (1 - 1) <<

PDMA _DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ BURST |
PDMA_OP_SCATTER,;

PDMA _TX2_ DESCJ0].src = (uint32_t)&g_u32DacDisable;
PDMA_TX2_DESC]J0].dest = (uint32_t)&DACO0->ADGCTL;
PDMA_TX2_ DESCJ0].offset = (uint32_t)&PDMA_TX2 DESCI[1] -
(PDMA->SCATBA);

PDMA_TX2_DESC[1].ctl =((1 - 1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_BURST |
PDMA_OP_SCATTER;

PDMA_TX2_DESCJ1].src = (uint32_t)&g_u32DacData;
PDMA_TX2_ DESC[1].dest = (uint32_t)&DACO0->DAT;
PDMA_TX2_DESC]J1].offset = (uint32_t)&PDMA_TX2_DESC[2] -
(PDMA->SCATBA); //link to first description

PDMA_TX2_DESC[2].ctl = ((1 - 1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER,;
PDMA_TX2 DESC]2].src = (uint32_t)&g_u32PinLow;
PDMA_TX2_DESC]J2].dest = (uint32_t)&ENCODE_TXD;
PDMA_TX2_DESC|2].offset = (uint32_t)&PDMA_TX2_DESC[0] —
(PDMA->SCATBA); /llink to first description

#else

/* Enable PDMA channels */

PDMA_Open(PDMA, 1<<PDMA_ENCODE_CH2);
PDMA_SetTransferMode(PDMA, PDMA_ENCODE_CH?2,
PDMA_MEM, TRUE, (uint32_t)&PDMA_TX2_DESCJO0]);

PDMA_TX2_DESCJ0].ctl = ((1 - 1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ BURST |
PDMA_OP_SCATTER;

PDMA_TX2_DESCJ0].src = (uint32_t)&g_u32DacEnable;
PDMA _TX2 DESCJ0].dest = (uint32_t)&DAC0->ADGCTL;

Page 7 of 21

Rev 1.00

NUVOTON MO030G Series

PDMA_TX2_DESCJ0].offset = (uint32_t)&PDMA_TX2_DESCI[1] -
(PDMA->SCATBA);

PDMA_TX2_DESC[1].ctl = ((1-1) <<
PDMA _DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_INC | PDMA_DAR_FIX | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER,;
PDMA_TX2 DESCJ[1].src = (uint32_t)&g_u32PinLow;
PDMA_TX2_DESC[1].dest = (uint32_t)&ENCODE_TXD;
PDMA_TX2_DESCI[1].offset = (uint32_t)&PDMA_TX2_DESC[0] —
(PDMA->SCATBA); /llink to first description

#endif

}

1.1.2 Hardware RX

This section describes how to decode RX signal by the MO31G Manchester hardware decoder.
As described in Section 1.1, the MO31G Manchester decoder needs the IDLE pattern in the
beginning of each frame. Therefore, the received RX signal needs to be reformed to another
RXm with the IDLE pattern. In this sample code, the RX signal is received from PB15 pin and
reformed to another RXm (PB5). In Figure 1-2, the IDLE pattern OXFF is inserted between two
frames.

Preamble byte Ox7E detection

OxFF inserted, PB5 in High state

Figure 1-2 RX and Reformed RX

At the same time, the reformed RXm is connected to the real Manchester RX pin, and the
Manchester hardware decoder can decode the RXm as shown in Figure 1-3.

Sep. 07, 2021 Page 8 of 21 Rev 1.00

NUVOTON MO030G Series

RX . PB15 (TMRO_EXT)

RXm
PB5

PB6 (HW RX)

Figure 1-3 RXm Loopback to Hardware RX

The procedure to decode the RX is listed below.

1. Decode the first Preamble byte by software.

>

Sep. 07, 2021

In this sample code, the bit stream is encoded by G.E. Thomas format in 2 kHz.
The M031G Timer0 capturing function with 1 MHz time base is used to decode the
first byte of Preamble byte (OX7E).

To begin searching the pattern OX7E, the TimerOQ is set to monitor the rising-edge
of external input in the beginning. Whenever the rising-edge of RX has been
detected, the TimerQ capture function is changed to detect the falling-edge. When
the falling-edge is detected later, the TimerO count value that is captured by the
falling-edge will be checked if the captured value is beyond 1,000+/-100. If the
value does not exceed 1,000+/-100, keep the TimerO capture function on falling-
edge detection. Otherwise, ignore the current detection and return to the first rising-
edge detection again.

If the captured values of six continuous falling-edges do not exceed 1,000+/-100,
it means that OX7E or Ox7F pattern has been detected. To confirm if OX7E has been
detected, the TimerO capture function is changed to detect the rising-edge. If the
captured value of next rising-edge is still in 1,000+/-100, it is confirmed OX7E
detected.

Figure 1-4 indicates that three continuous differences are captured by one rising-
edge and three falling-edge can be between 1,000+/-100 and means Ox7# to be

Page 9 of 21 Rev 1.00

NUVOTON MO030G Series

detected. Specifically, the RXm pin is kept at High state before Ox7E pattern is
detected as shown in Figure 1-2.

N
1101 030\ 1\I\1 0 01

Manchester [1 v Y [
(as per G.E. Thomas)

Figure 1-4 Preamble Byte Detection

[* For detecting Preamble pattern Ox7E by software */
void Manch_Receive_By_Software(uint32_t u32Time)

[* Check if the first rising-edge detected */
if(g_u8RxStatus == 0)

/* Change to detect falling-edge */
Timer_Decode_Capture_Set(TIMER_CAPTURE_FALLING_EDGE);
g_Uu8RxStatus = 1;

}
else if((g_u8RxStatus==1) || (g_u8RxStatus==2) || (g_u8RxStatus==3)
[| (9_u8RxStatus==4) || (g_u8RxStatus==5) || g_u8RxStatus==6))

[* Check the range of deviation */
if(u32Time>(TIME_2T-TIME_OFFSET)) &&
(u32Time<(TIME_2T+TIME_OFFSET)))

[* If the deviation of six falling-edge detections less than 100
(TIME_OFFSET), change to rising-edge detection */
if(g_u8RxStatus == 6)
Timer_Decode_Capture_Set(TIMER_CAPTURE
_RISING_EDGE);
0_U8RxStatus++;
}

else

{
Timer_Decode_Capture_Set(TIMER_CAPTURE _
RISING_EDGE);
g_Uu8RxStatus = 0;

}
b
else if(g_u8RxStatus == 7)

/* If consecutive seven deviations are less than 100,
It means that OX7E is detected */
if(u32Time>(TIME_2T-TIME_OFFSET)) &&

Sep. 07, 2021 Page 10 of 21 Rev 1.00

NUVOTON MO030G Series

(u32Time<(TIME_2T+TIME_OFFSET)))
{
g_Uu8RxStatus = 0;
NVIC_DisablelRQ(TMRO_IRQn);
TIMER_Start(TIMERZ2);
Timer_Decode_Capture_Set(TIMER_CAPTURE_FALLING
_AND_RISING_EDGE);
Timer_PDMA_Enable();

else

{
Timer_Decode_ Capture_Set(TIMER_CAPTURE _
RISING_EDGE);
g_u8RxStatus = 0;

}
}

}

2. Duplicate RX signal to RXm.
> After the first Preamble byte Ox7E is detected, the PDMA_DECODE_CHO is
enabled. Specifically, the PDMA_DECODE_CHQO is triggered by TimerO capture
RX rising-edge and falling-edge, and it can duplicate the RX signal to the RXm.
Two scatter-gather tables are set up for the PDMA_DECODE_CHO as listed below.

void PDMA_Rx_ Init(void)
{
/* Enable PDMA channels */
PDMA_Open(PDMA, 1<<PDMA_DECODE_CHO0);
PDMA_SetTransferMode(PDMA, PDMA_DECODE_CHO,
PDMA_TMRO, TRUE, (uint32_t)&PDMA_RX0_DESCI0]);

PDMA_RXO0_DESCI0].ctl=((1 - 1) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_FIX | PDMA_DAR_FIX | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER;

PDMA_RX0_DESC][0].src = (uint32_t)&g_u32DecodeTxBuf[0];
PDMA_RXO0_DESCJ0].dest = (uint32_t)&DECODE_TXD;
PDMA_RXO0_DESC]J0].offset = (uint32_t)&PDMA_RX0_DESC[1] —
(PDMA->SCATBA);

PDMA_RX0_DESC[1].ctl=((1-1) <<

PDMA _DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_32 |
PDMA_SAR_FIX | PDMA_DAR_FIX | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER,;

PDMA_RX0_DESCJ1].src = (uint32_t)&g_u32DecodeTxBuf[1];
PDMA_RXO0_DESCJ[1].dest = (uint32_t)&DECODE_TXD;
PDMA_RXO0_DESCIJ1].offset = (uint32_t)&PDMA_RXO0_DESCJ0] —
(PDMA->SCATBA); /llink to first description

Sep. 07, 2021 Page 11 of 21 Rev 1.00

NUVOTON MO030G Series

3. Set PDMA for Manchester hardware decoder.

» The PDMA_DECODE_CHa1 is for Manchester hardware decoder and two scatter-
gather tables are set. Specifically, the hardware decoder is always enabled and
can only decode the frame with the IDLE pattern in the beginning as shown in
Figure 1-2.

void PDMA_Rx_ Init(void)
{

/* Disable RX DMA */
MANCH_DISABLE_RX_DMA(MANCH);

/* MANCH RX PDMA channel configuration */
PDMA_Open(PDMA, 1<<PDMA_DECODE_CH1);
PDMA_SetTransferMode(PDMA, PDMA_DECODE_CH1,
PDMA_MANCH_RX, TRUE, (uint32_t)&PDMA_RX1 DESCIO0));

PDMA_RX1_ DESCJO0].ctl = (FRAME_LENGTH - 2) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_S8 |
PDMA_SAR_FIX | PDMA_DAR_INC | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER;

PDMA_RX1_DESC|O0].src = (uint32_t)&MANCH->RXDAT;

PDMA _RX1 DESC[0].dest = (uint32_t)g_u8ManchRxBuf[0];
PDMA_RX1_DESCJ0].offset = (uint32_t)&PDMA_RX1_DESC[1] —
(PDMA->SCATBA);

PDMA_RX1_DESC[1].ctl = (FRAME_LENGTH - 2) <<
PDMA_DSCT_CTL_TXCNT_Pos) | PDMA_WIDTH_8 |
PDMA_SAR_FIX | PDMA_DAR_INC | PDMA_REQ_SINGLE |
PDMA_OP_SCATTER,;

PDMA_RX1_DESC[1].src = (uint32_t)&MANCH->RXDAT,;
PDMA_RX1_DESCIJ1].dest = (uint32_t)g_u8ManchRxBuf[1];
PDMA_RX1_DESCJ[1].offset = (uint32_t)&PDMA_RX1_DESC[0] —
(PDMA->SCATBA); /llink to first description

/* Enable RX DMA */
MANCH_ENABLE_RX_DMA(MANCH);

1.1.3 CRC Checking

Sep. 07, 2021 Page 12 of 21 Rev 1.00

NnuvoToN

MO030G Series

In the MO31G Manchester decoder, there is no hardware mechanism to do the CRC checking.
After receiving the input frame from the dedicated RX pin, the CRC can be checked by the
MO031G CRC. This sample code provides two selections for the user to do the CRC checking,
as described below.

1. CRC checking by PDMA

{

int check_crc(uint8_t* buf)

/* Open Channel PDMA_DECODE_CRC_CH */
PDMA_Open(PDMA,1 << PDMA_DECODE_CRC_CH):

PDMA_SetTransferCnt(PDMA, PDMA DECODE_CRC_CH,

PDMA WIDTH_8, MSG_LENGTH);

PDMA_SetTransferAddr(PDMA, PDMA_DECODE_CRC_CH, (uint32_t)buf,
PDMA_SAR_INC, (uint32_t)&CRC->DAT, PDMA_DAR_FIX);
PDMA_SetTransferMode(PDMA, PDMA_DECODE_CRC_CH, DMA_MEM,
FALSE, 0);

PDMA_SetBurstType(PDMA, PDMA _DECODE_CRC_CH,

PDMA REQ_BURST, PDMA_BURST_1);

[* Generate a software request to trigger transfer with PDMA */
PDMA_Trigger(PDMA, PDMA_DECODE_CRC_CH);

/* Wait transfer done */
while(!((PDMA_GET_TD_STS(PDMA)&(PDMA_TDSTS_TDIFO_Msk<<PD
MA_DECODE_CRC_CH))));

/* Clear transfer done flag */
PDMA_CLR_TD_FLAG(PDMA,
(PDMA_TDSTS_TDIFO_Msk<<PDMA_DECODE_CRC_CH));

/* Get CRC-8 checksum value */
checksum = CRC_GetChecksum();

2. CRC checking by no PDMA

int check_crc(uint8_t* buf)

{

[* Start to calculate CRC checksum in buffer */
for(i=0; i < MSG_BEFORE_CRC,; i++)

CRC_WRITE DATA(bufj]);

Sep. 07, 2021 Page 13 of 21

Rev 1.00

NnUvVOoTOoN

MO030G Series

j++;

}

/* Store checksum in buffer */
buf_checksum = buf[j];
j+t
/* Continue to calculate CRC checksum in buffer */
for(i=0;i < MSG_LENGTH,; i++)
CRC_WRITE_DATA(buf[j]);
j+
}

/* Get CRC-8 checksum value */
checksum = CRC_GetChecksum();

1.2 Operation Process

Before doing the test, the related hardware connection must be ready. This sample can be
verified by self-loopback test or full duplex test between two M031G evaluation boards. When
this sample code begins to be executed, the console can display the message as shown in

Figure 1-5.

Figure 1-5 Console Message

Sep. 07, 2021 Page 14 of 21

Rev 1.00

NUVOTON MO030G Series

2 Demo Result

From the test result, the received frame size is only 63-byte. This reason is that one Preamble
byte is served as the IDLE pattern, and the hardware decoder does not receive it. This sample
also provides another option to copy the received buffer to another rearranged 64-byte buffer,
g_u8ManchRxBuf_ReArranged][].

Figure 2-1 Output Result

Sep. 07, 2021 Page 15 of 21 Rev 1.00

NUVOTON MO030G Series

3 Software and Hardware Requirements

3.1 Software Requirements

® BSP version
4 MO030G BSP CMSIS V3.01.000

® |DE version
€ Keil uVversion 5.27

3.2 Hardware Requirements

® MO031 GPON_GFN33_NU_AUTO Module

Sep. 07, 2021 Page 16 of 21 Rev 1.00

NnNUvoTOoON MO030G Series
® Pins Connection
“ — PA2 (SW TX) PBS | "
———| PB15 (TMRO _EXT)
PB6 (HW RX) [«
« —| PAO (DACO)
Figure 3-1 Pins Connection

Sep. 07, 2021 Page 17 of 21 Rev 1.00

NUVOTON MO030G Series

4 Directory Information

The directory structure is shown below.
~ MO030G BSP

I~ Library Sample code header and source files
I~ CMSIS Cortex® Microcontroller Software Interface
Standard (CMSIS) by Arm® Corp.
~ Device CMSIS compliant device header file
7~ StdDriver ?\lll peripheral driver header and source
iles

r—~ SampleCode
I~ MANCH_TXRXLoopback_ Source files of example code

NoldlePatterninFrames

Figure 4-1 Directory Structure

Sep. 07, 2021 Page 18 of 21 Rev 1.00

NUVOTON MO030G Series

5 Example Code Execution

1. Browse the sample code folder as described in the Directory Information section and
double-click MANCH_TXRXLoopback_NoldlePatterninFrames.uvproj.

2. Enter Keil compile mode.

® Build

® Download

® Start/Stop debug session
3. Enter debug mode.

® Run

Sep. 07, 2021 Page 19 of 21 Rev 1.00

NUVOTON MO030G Series

6 Revision History

Date Revision Description

2021.09.07 1.00 1. Initially issued.

Sep. 07, 2021 Page 20 of 21 Rev 1.00

NUVOTON MO030G Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

Sep. 07, 2021 Page 21 of 21 Rev 1.00

