

Jun. 27, 2025 Page 1 of 9 Rev 1.01

ER6016

Errata Sheet for 32-bit NuMicro® Family

Document Information

Abstract This errata sheet describes the functional problem known at the
release date of this document.

Apply to M253 Series.

The information described in this document is the exclusive intellectual property of

 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.
www.nuvoton.com

M253 Series Errata Sheet

http://www.nuvoton.com/

Jun. 27, 2025 Page 2 of 9 Rev 1.01

ER6016

Table of Contents

OVERVIEW ... 3

FUNCTIONAL PROBLEMS ... 4
1.1 CAN FD register access error .. 4
1.2 CAN FD sends an error message while receiving a new message 5
1.3 EADC gets unexpected data in oversampling mode or averaging mode 6
1.4 EADC oversampling mode or averaging mode cannot be monitored by compare and

window compare functions ... 7

REVISION HISTORY ... 8

Jun. 27, 2025 Page 3 of 9 Rev 1.01

ER6016

Overview

Functional Problem Description

CAN FD register access
error.

CPU reads an incorrect value from CAN FD register while the
message RAM is accessed by CAN controller. The incorrect
value is 0, but the correct value should not be 0.

CAN FD sends an error
message while receiving a
new message.

If a sent message and a received message happens at the
same time, the sent message data will be overwritten with the
received message data during the CAN FD controller reading
data from the CAN FD SRAM.

EADC gets unexpected
data in oversampling
mode or averaging mode.

Reading the EADC_DAT register during an ongoing conversion
with the accumulation function enabled returns the
intermediate accumulated value instead of the final result.

 EADC oversampling
mode or averaging mode
cannot be monitored by
compare and window
compare functions.

Incorrect comparison results occur in compare mode when the
accumulation function is enabled in EADC.

Jun. 27, 2025 Page 4 of 9 Rev 1.01

ER6016

Functional Problems

1.1 CAN FD register access error

Description:

CPU reads an incorrect value from CANFD register while the message RAM under is
accessed by CAN controller. The incorrect value is 0, but the correct value should not be 0.

Problem:

When the CAN FD controller receives a message from CAN bus, the CAN FD controller will
read or write CAN FD SRAM during this read/write cycle. CPU will always read "0" data from
CAN FD register.

Workaround:

The BSP adds a function to wrap reading the CANFD register. If the read value is 0, the
function will continue to read 48 counts.

Note: This function supports M253_Series_BSP_CMSIS_V3.00.005 and later versions.

#define CANFD_READ_REG_TIMEOUT 48 /* CANFD read register time-out count */

uint32_t CANFD_ReadReg(__I uint32_t *pu32RegAddr)
{
 uint32_t u32ReadReg;
 uint32_t u32TimeOutCnt = CANFD_READ_REG_TIMEOUT;
 u32ReadReg = 0UL;

 do
 {
 u32ReadReg = inpw(pu32RegAddr);

 if (--u32TimeOutCnt == 0UL)
 {
 break;
 }
 } while (u32ReadReg == 0UL);

 return u32ReadReg;
}

Jun. 27, 2025 Page 5 of 9 Rev 1.01

ER6016

1.2 CAN FD sends an error message while receiving a new message

Description:

If a sent message and a received message happens at the same time, the sent message data
will be overwritten with the received message data during the CAN FD controller reading data
from the CAN FD SRAM.

Problem:

The CAN FD controller will access CAN SRAM after Tx message is triggered or Rx message
data is received. If the Tx message and Rx message happens at the same time, the Tx
message data will be overwritten by Rx message data during CAN FD controller reading data
from CAN FD SRAM. As a result, the CAN FD controller will follow incorrect data to transmit.

Workaround:

The BSP driver has been revised to monitor bus communication status while CPU requests to
send a new message. The driver will write data to a message buffer while bus is in idle state
to avoid the occurrence of CANFD internal message RAM buffer having read-while-write
condition.

Note: This function supports M253_Series_BSP_CMSIS_V3.00.005 and later versions.

/* CAN FD communication state.*/
typedef enum
{
 eCANFD_SYNC = 0,
 eCANFD_IDLE = 1,
 eCANFD_RECEIVER = 2,
 eCANFD_TRANSMITTER = 3
} E_CANFD_COMMUNICATION_STATE;

/* Get Monitors the Module’s CAN Communication State Flag */
#define CANFD_GET_COMMUNICATION_STATE(canfd) (((canfd)->PSR & CANFD_PSR_ACT_Msk) >>
CANFD_PSR_ACT_Pos)

The Tx trigger timing should be controlled when the CAN bus is in idle state.

while(1)
{
 __disable_irq();
 if(CANFD_GET_COMMUNICATION_STATE (CANFD0) == eCANFD_IDLE)
 {
 CANFD_TransmitTxMsg(CANFD0, 0, psTxMsg);
 }
 __enable_irq();
}

Note1 : To avoid long interrupt delay, the CANFD interrupt priority should be set as the
highest and CANFD_TransmitTxMsg() is executed during disable interrupt
(__disable_irq()).

Note2 : This function supports M253_Series_BSP_CMSIS_V3.00.005 and later versions.

Jun. 27, 2025 Page 6 of 9 Rev 1.01

ER6016

1.3 EADC gets unexpected data in oversampling mode or averaging mode

Description:

Reading the EADC_DAT register during an ongoing conversion with the accumulation
function enabled returns the intermediate accumulated value instead of the final result.

Problem:

With the accumulation function enabled, the EADC accumulates multiple samples before
producing a final conversion result. If EADC_DAT is read during this accumulation process,
the value obtained reflects partial data rather than the data for a complete conversion. This
may cause incorrect data interpretation if the result is used prematurely.

Workaround:

Use PDMA to retrieve conversion results in applications that require frequent or real-time data
access while operating in oversampling or averaging mode.

1. Configure PDMA.

2. Configure EADC in accumulation function.

3. Enable the EADC’s PDMA function.

4. Trigger EADC.

 /* Configure PDMA peripheral mode form EADC to memory */
 PDMA_Init();

 /* Set the EADC and enable the A/D converter */
 EADC_Open(EADC, 0);

 /* Configure the sample module and trigger source */
 EADC_ConfigSampleModule(EADC, u32ModuleNum, EADC_SOFTWARE_TRIGGER, u32ChannelNum);

 /* Enable Accumulate feature */
 EADC_ENABLE_ACU(EADC, u32ModuleNum, EADC_MCTL1_ACU_8);

 /* Enable Average feature */
 EADC_ENABLE_AVG(EADC, u32ModuleNum);

 /* Enable EADC’s PDMA */
 EADC_ENABLE_PDMA(EADC, u32ModuleNum);

 /* Trigger sample module to start A/D conversion */
 EADC_START_CONV(EADC, u32ModuleMask);

Jun. 27, 2025 Page 7 of 9 Rev 1.01

ER6016

1.4 EADC oversampling mode or averaging mode cannot be monitored by
compare and window compare functions

Description:

Incorrect comparison results occur in compare mode when the accumulation function is
enabled in EADC.

Problem:

While the comparison of accumulated data by compare mode is completed before
conversion, the data is still in a transient state, resulting in incorrect comparison results.

Workaround:

To solve this issue, a software-based compare function can be implemented in place of the
hardware compare mode.

1. Get completed EADC conversions. (ADIF set and result valid, or transferred to SRAM via
PDMA)

2. Compare obtained data against a threshold.

 /* Transferred to SRAM via PDMA */
 i32ConversionData = g_ai16ConversionData[0];

 /* Compare target */
 i32Target = 0x600;

 if (i32ConversionData >= i32Target)
 {
 printf("The conversion result is >= 0x%03X\n", i32Target);
 }
 else
 {
 printf("The conversion result is < 0x%03X\n", i32Target);
 }

Jun. 27, 2025 Page 8 of 9 Rev 1.01

ER6016

Revision History

Date Revision Description

2022.08.27 1.00 • Initial version.

2025.06.27 1.01

• Added issue of EADC accumulation
function returns incomplete data during
conversion.

• Added issue of EADC compare mode
behavior issue when using accumulation
function.

Jun. 27, 2025 Page 9 of 9 Rev 1.01

ER6016

	Overview
	Functional Problems
	1.1 CAN FD register access error
	1.2 CAN FD sends an error message while receiving a new message
	1.3 EADC gets unexpected data in oversampling mode or averaging mode
	1.4 EADC oversampling mode or averaging mode cannot be monitored by compare and window compare functions

	Revision History

