NL-NAU88C10 User Manual **Evaluation Board for NAU88C10** The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based system design. Nuvoton assumes no responsibility for errors or omissions. All data and specifications are subject to change without notice. # **Table of Contents** | 1 | OVERVIEW | 5 | |---|---|----| | 2 | HARDWARE CONFIGURATION | 6 | | | 2.1 NL-NAU88C10 Front View | 6 | | | 2.2 NL-NAU88C10 Connectors | 7 | | | 2.3 NL-NAU88C10 Jumpers | 9 | | | 2.4 NU-NAUSB2I2C USB Control Board View | 10 | | | 2.5 Hardware Check and Connection | 11 | | 3 | SOFTWARE CONFIGURATION | 13 | | | 3.1 NuvotonAudioGUI Installation | 13 | | | 3.2 NuvotonAudioGUI Operating Instructions | 16 | | | 3.3 NuvotonAudioGUI Basic Page Introduction | 18 | | | 3.3.1 Start Page and Demo Sequence | 18 | | | 3.3.2 Audio Path Page | | | | 3.3.3 Register Map | 20 | | | 3.4 Recording Software Verification | 21 | | 4 | SCHEMATICS | 22 | | | 4.1 NL-NAU88C10 Schematic | | | | 4.2 NL-NAU88C10 PCB Layout | 23 | | 5 | REVISION HISTORY | 24 | # List of Figures | Figure 1-1 NL-NAU88C10 Evaluation Board | . 5 | |---|-----| | Figure 2-1 Front View of NL-NAU88C10 | . 6 | | Figure 2-2 NU-NAUSB2I2C1 | 10 | | Figure 2-3 PIN Status of NU-NAUSB2I2C SW21 | 11 | | Figure 2-4 NU-NAUSB2I2C Connection1 | 11 | | Figure 2-5 Signal Path of NU-NAUSB2I2C and NL-NAU88C101 | 12 | | Figure 2-6 PC Audio Device Setting1 | 12 | | Figure 3-1 NuvotonAudioGUI Installation Step (1)1 | 13 | | Figure 3-2 NuvotonAudioGUI Installation Step (2)1 | 14 | | Figure 3-3 NuvotonAudioGUI Installation Step (3)1 | 15 | | Figure 3-4 NuvotonAudioGUI Operating Step (1)1 | 16 | | Figure 3-5 NuvotonAudioGUI Operating Step (2)1 | 16 | | Figure 3-6 NuvotonAudioGUI Operating Step (3)1 | 17 | | Figure 3-7 NuvotonAudioGUI Operating Step (4)1 | 17 | | Figure 3-8 Start Page on NuvotonAudioGUI1 | 18 | | Figure 3-9 Audio Path Page on NuvotonAudioGUI1 | 19 | | Figure 3-10 Register Map Page on NuvotonAudioGUI2 | 20 | | Figure 3-11 Audacity Recording Settings2 | 21 | | Figure 4-1 NL-NAU88C10 Circuit2 | 22 | | Figure 4-2 NL-NAU88C10 Layout2 | 23 | # List of Tables | Table 2-1 NL-NAU88C10 Extension Connectors | 8 | |--|---| | Table 2-2 NL-NAU88C10 Jumpers | 9 | ### 1 OVERVIEW The NL-NAU88C10 is the evaluation board for NAU88C10. This board is developed for users to quickly understand the characteristics of NAU88C10. For development flexibility, this board has built-in additional expansion connectors that provide the audio signal input, output, speaker output, headphone output and digital interface. For development convenience, NL-NAU88C10 can be connected with speakers or directly to customized system. Nuvoton has also developed a USB control board, NU-NAUSB2I2C, which provides I²C control interface and digital audio interface signals. Along with the software NuvotonAudioGUI, users can quickly set up and use NL-NAU88C10 on their PCs. Figure 1-1 NL-NAU88C10 Evaluation Board NL-NAU88C10 compatible ICs: - NAU88C10YG - NAU8810YG - NAU88U10YG ### 2 HARDWARE CONFIGURATION ### 2.1 NL-NAU88C10 Front View Figure 2-1 Front View of NL-NAU88C10 Figure 2-1 shows the main components and connectors from the front side of NL-NAU88C10 as the following list: - Target Chip: NAU88C10 (U1) - RCA Terminals and Additional Connectors for MIC Input - RCA Terminals and Additional Connectors for Mono Output - Additional Connectors for Speaker Output - On Board 12.288M OSC (12.288M Hz) for MCLK Pin - Major Digital Interface and Power Extension Connector - VDDSPK Level Selection # 2.2 NL-NAU88C10 Connectors Table 2-1 describes the connectors on NL-NAU88C10. Users can also refer to Figure 2-1. | Header | | NL-NAU88C10 | | | |--------|---------|--------------------------|--|--| | неа | ader | Net Name in
Schematic | Description | | | | CON1.1 | MCLK_CB | CODEC External Master Clock Source Input | | | | CON1.2 | DGND | GND | | | | CON1.3 | BCLK_CB | Serial Data Bit Clock Input / Output for I ² S / PCM Data | | | | CON1.4 | DGND | GND | | | | CON1.5 | DACIN | Serial Audio Data Input for I ² S / PCM Data | | | | CON1.6 | DGND | GND | | | | CON1.7 | ADCOUT | Serial Audio Data Output for I ² S / PCM Data | | | | CON1.8 | DGND | GND | | | | CON1.9 | FSYNC | Frame Sync Input / Output for I ² S / PCM Data | | | | CON1.10 | DGND | GND | | | CON1 | CON1.11 | SCL_CB | Serial Data Clock for I ² C | | | CONT | CON1.12 | DGND | GND | | | | CON1.13 | SDA_CB | Serial Data for I ² C | | | | CON1.14 | DGND | GND | | | | CON1.15 | VDDIO_CB | VDDIO | | | | CON1.16 | DGND | GND | | | | CON1.17 | VDD18_CB | 1.8V Power Supply | | | | CON1.18 | DGND | GND | | | | CON1.19 | VDD33_CB | 3.3V Power Supply | | | | CON1.20 | DGND | GND | | | | CON1.21 | VDD50_CB | 5V Power Supply | | | | CON1.22 | DGND | GND | | | | | NL-NAU88C10 | | | |------|--------|-------------|-----------------------------|--| | Hea | Header | | Description | | | CON2 | | | MIC Input (RCA connector) | | | J14 | J14.1 | MIC+_CON2 | Microphone Positive Input | | | 314 | J14.2 | MICCON2 | Microphone Negative Input | | | CON2 | | | Mono Output (RCA connector) | | | J7 | J7.1 | MOUT | MONO Output | | | 37 | J7.2 | AGND | GND | | | J10 | J10.1 | AGND | GND | | | 310 | J10.2 | | | | | J11 | J11.1 | DGND | GND | | | 311 | J11.2 | | | | | | J3.1 | SPKOUT- | Speaker Positive Output | | | J3 | J3.2 | | | | | J3 | J3.3 | SPKOUT+ | Speaker Besitive Output | | | | J3.4 | 3FN001+ | Speaker Positive Output | | Table 2-1 NL-NAU88C10 Extension Connectors # 2.3 NL-NAU88C10 Jumpers Table 2-2 describes the connectors on NL-NAU88C10. Users can refer to Figure 2-1 at the same time. | | NL-NAU88C10 | | | |--------|----------------------------------|-------------|---| | Jumper | Function
Description | Options | Jumper Option Description | | J4 | On Board OSC
Selection | J4.1 – J4.2 | Onboard OSC to Provide MCLK (12.288 MHz) to NL-NAU88C10 | | 34 | | J4.2 – J4.3 | Using MCLK Clock from JP_I2S_CB | | J6 | VDDSPK Selection | J6.1 – J6.2 | VDDSPK = 3.3V | | 36 | | J6.2 – J6.3 | VDDSPK = 5V | | | Signal Input Format
Selection | J9.1 – J9.2 | For Mic In: Differential Input | | J9 | | J9.2 – J9.3 | For Mic In: Signal-End Input | | | | Floating | Signal Differential Input. It needs to adjust with J8 | | J8 | Signal Input Format
Selection | J8.1 – J8.2 | For MIC input | | 36 | | Floating | Signal Differential input. It needs to adjust with J9 | Table 2-2 NL-NAU88C10 Jumpers ### 2.4 NU-NAUSB2I2C USB Control Board View The NU-NAUSB2I2C provides I²C control signals and common audio digital formats. With this board, users can quickly evaluate the functions and features of the NL-NAU88C10 and perform basic operations on the NL-NAU88C10 in conjunction with the content of this document. For more details of NU-NAUSB2I2C, please refer to *NU-NAUSB2I2C User Manual*. Figure 2-2 NU-NAUSB2I2C ### 2.5 Hardware Check and Connection Before using NuvotonAudioGUI, please confirm the hardware configured as follows before connecting to a Windows based PC. 1. Confirm that pin 7 of SW2 of NU-NAUSB2I2C is high and the rest are low level, as shown in Figure 2-3. Figure 2-3 PIN Status of NU-NAUSB2I2C SW2 2. Connect J5 of NU-NAUSB2I2C to JP2 of NL-NAU88C10. Figure 2-4 is the diagram after two boards are connected to each other. Figure 2-4 NU-NAUSB2I2C Connection 3. CN2 of NU-NAUSB2I2C uses USB Cable to connect to a PC under Windows system. (If possible, please do not connect to the PC through USB HUB). Figure 2-5 shows the audio signal path after the two boards are connected to each other. Figure 2-5 Signal Path of NU-NAUSB2I2C and NL-NAU88C10 4. Select the audio device on the PC as "Nuvoton UAC+HID Device". For example, under Win10 system, users can click the speaker icon on the bottom-right corner of the desktop and choose the device "Nuvoton UAC+HID Device," as shown in Figure 2-6. This will select "Nuvoton UAC+HID Device" as the current playback device. Figure 2-6 PC Audio Device Setting ### 3 SOFTWARE CONFIGURATION This document is compatible with NuvotonAudioGUI V2.04 or later. Evaluation of NL-NAU88C10 feature needs to install NuvotonAudioGUI. ### 3.1 NuvotonAudioGUI Installation 1. Visit Nuvoton Website. Download NuvotonAudioGUI software. https://www.nuvoton.com/tool-and-software/software-tool/programmer-tool/ Figure 3-1 NuvotonAudioGUI Installation Step (1) 2. Install the NuvotonAudioGUI. The installation steps are shown in Figure 3-2 and Figure 3-3. Figure 3-2 NuvotonAudioGUI Installation Step (2) nuvoTon Figure 3-3 NuvotonAudioGUI Installation Step (3) ### 3.2 NuvotonAudioGUI Operating Instructions 1. Open NuvotonAudioGUI, choose the corresponding IC Part Number, and chick [OK], as shown in Figure 3-4. Figure 3-4 NuvotonAudioGUI Operating Step (1) 2. After clicking [OK], NuvotonAudioGUI will automatically read the connection status and verify the firmware version of the NU-NAUSB2I2C. If the firmware version is outdated, the version reminder window shown in Figure 3-5 will pop up. Users can ignore this message and continue operating NuvotonAudioGUI by clicking the [X] on the top-right corner. For more firmware update process information, please refer to NU-NAUSB2I2C User Manual. Figure 3-5 NuvotonAudioGUI Operating Step (2) 3. NuvotonAudioGUI will automatically read connection status. If the hardware and software are properly configured, a green [Connect] will appear on the upper left corner of the NuvotonAudioGUI window, as shown in Figure 3-6. Then users can issue I²C commands through NuvotonAudioGUI to control NL-NAU88C10. Figure 3-6 NuvotonAudioGUI Operating Step (3) 4. If the red [Disonnected] appears on the upper left corner of the NuvotonAudioGUI window, as shown in Figure 3-7, check if the hardware configuration is correct. For example: USB cable, whether your PC USB has read and write permissions, and whether Section 2.5 is executed correctly. If the problem still exists, please contact Nuvoton. Figure 3-7 NuvotonAudioGUI Operating Step (4) ### 3.3 NuvotonAudioGUI Basic Page Introduction NAU88C10 function settings are divided into multiple pages in NuvotonAudioGUI. This document will take a few frequently used pages as brief introduction. ### 3.3.1 Start Page and Demo Sequence Start Page is the default view of NuvotonAudioGUI with links to all pages. Users can immediately enable the NL-NAU88C10 function by this page and the NuvotonAudioGUI built-in demo sequences. Refer to Figure 3-8 and the following description to operate. - 1. Click the drop-down menu on the start page. - 2. Select the option for the corresponding evaluation board. - 3. Click the [Load] button. NuvotonAudioGUI provides two sets of settings for users to choose from: DemoSequence_NAU88C10 and DemoSequence_NAU88C10+Sidetone. DemoSequence_NAU88C10: This setting enables the MIC IN (ADC function) and SPK OUT (DAC function) functions of the NAU88C10. Users can play their desired audio files using the playback device on the PC with the system playback device set to "Nuvoton UAC+HID Device". The audio will then be heard through the speakers or headphone installed on the NL-NAU88C10. DemoSequence_NAU88C10+Sidetone: This setting is almost identical to DemoSequence_NAU88C10, with the difference being that the speakers or headphone can directly play the sound received by the microphone. Figure 3-8 Start Page on NuvotonAudioGUI ### 3.3.2 Audio Path Page The Audio Path page graphically presents path switches, power controls, and Gain adjustments, allowing users to configure NAU88C10 as easy as possible. It is high recommended to use the DemoSequence setting first, and then use the Audio Path page to do more customized control. - Click on the red boxes in Figure 3-9 to adjust the power of this function. When power is on, the box will be green. When Power is off, the box will be gray. - Click on the blue arrows in Figure 3-9 to adjust the enabling status of the path. - Click on the pink arrows in Figure 3-9 and a drop-down menu will appear, where the user can adjust the Gain there. - The blue box in Figure 3-9 lists the current graphical status here in text form. The user can also modify the status of the function from here. Figure 3-9 Audio Path Page on NuvotonAudioGUI ### 3.3.3 Register Map The Register map page can modify the target register value through NuvotonAudioGUI. The following explains two main modification methods. - Users can directly key in desired register values into the "Value" field next to the corresponding address, as shown in Figure 3-10. ("Value" has hexadecimal and binary column respectively, just select one to modify.) - If users want to read the specified address value, enter the address value in the "Address" field, as shown in Figure 3-10. After clicking the [Read] button on the left, the address value will be displayed in the "Value" field. If users want to modify the specified address value, enter the desired address and corresponding value in the "Address" and "Value" fields respectively, and click the [Write] button on the left to complete the modification. There are two functions [Import] and [Export] on the Register page: - [Export]: Export the currently set values into a text file. - [Import]: Import external text files and set them to the target evaluation board. Figure 3-10 Register Map Page on NuvotonAudioGUI ### 3.4 Recording Software Verification When user uses a microphone or other audio source devices to verify the ADC functionality of the NAU88C10, the digital signal from the converted ADC data is not easy to quickly verify or test using common instruments. However, when the NU-NAUSB2I2C is paired with the NL-NAU88C10, NU-NAUSB2I2C can convert the ADC data signal and deliver it to the PC, allowing the user to verify the ADC functionality of the NAU88C10 using Windows' built-in recording software or other recording applications. Audacity is a free and user-friendly software that allows users to perform playback and recording tests. The following briefly introduces how to record with Audacity. After opening Audacity, confirm or set the recording device to "Nuvoton UAC+HID Device" by following the Step 1 to 3 in Figure 3-11. Click the icon shown in Step 4 of the figure to start recording and the icon in Step 5 of the figure to stop recording. The sound captured by the microphone or other audio source devices on the NL-NAU88C10 will be shown on the audio track. Figure 3-11 Audacity Recording Settings ### 4 SCHEMATICS # 4.1 NL-NAU88C10 Schematic Figure 4-1 shows the NL-NAU88C10 circuit. Figure 4-1 NL-NAU88C10 Circuit # 4.2 NL-NAU88C10 PCB Layout Figure 4-2 shows the placement of NL-NAU88C10. Figure 4-2 NL-NAU88C10 Layout # **5 REVISION HISTORY** | REVISION | DATE | DESCRIPTION | |----------|--------------|---| | 1.0 | Feb 18, 2025 | Initial Release | | 1.1 | Apr 24, 2025 | Update 3.1 NuvotonAudioGUI Installation | ### IMPORTANT NOTICE Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage". Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life. All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton. Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.