

July.01, 2019 Page 1 of 17 Rev 1.00

NUC122 Series

Example Code Introduction for 32-bit NuMicro®Family

Information

Application
Demonstrate how to implement a USB HID composite device
(Mouse, Keyboard with Caps Lock LED and Media key).

BSP Version NUC122 Series BSP CMSIS v3.00.003

Hardware NuTiny-EVB-122-LQFP64 V2.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

USB Composite Device with Caps Lock LED

July.01, 2019 Page 2 of 17 Rev 1.00

NUC122 Series

1 Function Description

1.1 Introduction

An USB Composite Device is a peripheral device that supports more than one device class at

the same time. This example code consists of HID mouse, HID keyboard and HID media key

in one USB device. The PD.1 ~ PD.4 are used to select content of HID report for report test

and PD5 is used to be the Cap Lock LED.

1.2 Principle

This example code includes 2 interfaces that follow HID (Human Interface Devices)

specification. Based on USB spec, endpoint 0 for control transfer is used for USB

enumeration. There are 2 endpoints to upload HID report. In this example, control pipe

(endpoint 0) is made of two hardware endpoints 0 and 1 in device. Every interface works as a

specific function and contains a HID interrupt IN endpoint for IN data transfer. The interfaces

and endpoints configuration are shown in Table 1.

Function USB Composite Device NUC122 Hardware setting
Control Transfer Control Pipe

endpoint 0: Control IN/OUT
endpoint 0: Control IN
endpoint 1: Control OUT

HID Mouse Interface 0
endpoint 1: Interrupt IN

endpoint 2: Interrupt IN

HID Keyboard Interface 1
endpoint 2: Interrupt IN

endpoint 3: Interrupt IN

Table 1 Configuration of HID composite interfaces and endpoints

HID report descriptor is used to define HID report format and can be customized based on

application demand. This example includes 2 HID report descriptors to support HID report

formats for mouse and keyboard/media key that are listed in Table 2 and Table 3.

Byte Bits Description
0 0~2 Button 1~3
0 3~7 Padding
1 0~7 X-axis
2 0~7 Y-axis

Table 2 HID Mouse report format

July.01, 2019 Page 3 of 17 Rev 1.00

NUC122 Series

Byte Bits Description
0 0~7 Report ID :0x01 Report ID :0x02
1 0 Modifier Keys Mute
1 1 Modifier Keys Volume+
1 2 Modifier Keys Volume-
1 3 Modifier Keys Brightness+
1 4 Modifier Keys Brightness-
1 5~7 Modifier Keys Reserved
2 0~7 Reserved Reserved
3 0~7 Key code 1 Reserved
4 0~7 Key code 2 Reserved
5 0~7 Key code 3 Reserved
6 0~7 Key code 4 Reserved
7 0~7 Key code 5 Reserved
8 0~7 Key code 6 Reserved

Table 3 HID Keyboard / Media key report format

The Set_Report request is one of the class-specific requests; it allows the host to send a

report to the device, possibly setting the state of input, output or feature controls. These

transactions are done through the control pipe; therefore, they must follow the control pipe

request format defined in the USB specification. The Set_Report Request format is listed in

Table 4.

Field Length (bits) Description
bmRequestType 8 00100001
bRequest 8 SET_REPORT (0x09)
wValue 16 Report Type and Report ID
wIndex 16 Interface
wLength 16 Report Length

Table 4 Set_Report Request Format

Among of them, the wValue field specifies Report Type in the high byte, and the Report Type

is specified as Table 5. Therefore, user can read the output report transferred from control

OUT endpoint in this example code if the Report Type is 0x2.

Value Report Type
0x1 Input
0x2 Output
0x3 Feature
0x4-0xFF Reserved

Table 5 Report Type

July.01, 2019 Page 4 of 17 Rev 1.00

NUC122 Series

With this HID report descriptor, PC sends back one byte of output report for the LED on-off

status. The bitmap of the output report is as follows,

Byte Bits Description
0 0~7 Report ID :0x01
1 0 Num Lock
1 1 Caps Lock
1 2 Scroll Lock
1 3 Compose
1 4 Kana
1 5~7 Reserved

Table 6 Output Report Format

1.3 Demo Result

After plug-in USB device, the USB device tree information could be got by USBLyzer in Figure 1.

In this demo, the USB composite device includes 2 interfaces to support HID mouse, keyboard

and media key function.

Figure 1 Device Tree

July.01, 2019 Page 5 of 17 Rev 1.00

NUC122 Series

1.3.1 HID Mouse Report

In Figure 2 and Table 2, Data field of X-axis (Byte 1) is changed to 0x1 during the PD.1 is

connected to ground (Button Pressed). At this time, the mouse pointer is moving right.

Figure 2 Mouse Report Packets

1.3.2 HID Keyboard Report

In Figure 3 and Table 3, Data field of key code 1 (Byte 3) is changed to 0x04 during the PD.2 is

connected to ground (button pressed). At this time, the character of keyboard input is ‘A’ and

showed at input area of notepad displayed in Figure 4. The key code, 0x04, defined in “HID

USAGE TABLE V1.12” is character ‘A’.

Figure 3 Keyboard packets

July.01, 2019 Page 6 of 17 Rev 1.00

NUC122 Series

Figure 4 Keyboard input to notepad

1.3.3 HID Media key Report

In Figure 5, data fields (Bit 1 or Bit 2 of Byte1) is changed during the PD.3 or PD.4 is connected

to ground. At this time, the volume setting is getting up or down.

Figure 5 Media key packets

1.3.4 LED On-Off Status Output Report

When Caps Lock status is changed (the bit 1 of byte 1), you can check if the LED light

(GPD5) changes or not. Moreover, you can see the data of set report request you get as

shown in Figure 6.

Figure 6 Set Report packets

July.01, 2019 Page 7 of 17 Rev 1.00

NUC122 Series

2 Code Description

This example code supports HID mouse, HID keyboard and HID media key function that follows

the HID specification. Therefore, the implementation and transfer flow of the two interfaces are

similar. Each function uses an interrupt IN endpoint. In Figure 7, the endpoint will respond to USB

host with the data whose format is defined in HID report descriptor when USB host issues IN

token to request data.

Figure 7 Interrupt IN Transaction for two endpoints

2.1 Mouse, Keyboard and Media key

2.1.1 main.c

In the main program, it is always polling the function of HID_UpdateKbData() and

HID_UpdateMsData() to simulate a key input, and checking what data we got when

Set_Report request occurred.

while (1) {

HID_UpdateKbData();

HID_UpdateMsData();

/* Enter power down when USB suspend */

if(g_u8Suspend)

PowerDown();

if(memcmp(SetReport, PreSetReport, 2))

{

if(SetReport[1] & 0x2)

PD5 = 1; /* Turn On CapsLock LED */

else

PD5 = 0; /* Turn Off CapsLock LED */

memcpy(PreSetReport, SetReport, 2);

}

}

July.01, 2019 Page 8 of 17 Rev 1.00

NUC122 Series

2.1.2 hid.c
Only take mouse as example. USB Host issues IN token to request the data from the endpoint 1.

While IN token received, g_u8EP2Ready will be set to 1 in endpoint 2 interrupt handler.

HID_UpdateMsData() will be executed to setup the payload and then send data if

g_u8EP2Ready is 1.

Implementation of HID_UpdateKbData() is almost the same with HID_UpdateMsData(). The few

differences are the settings of buffer and endpoint number. For keyboard/media key, interrupt IN

buffer is 9 bytes (include 1 byte for Report ID) and NUC122 endpoint number is 3.

void HID_UpdateMouseData(void)

{

uint8_t *buf;

if (g_u8EP2Ready)

{

buf = (uint8_t *)(USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP2));

g_u8EP2Ready = 0; /* Clear flag */

for(i = 0; i < 3; i++)

buf[0] = 0x00;

if ((PD->PIN & BIT1) == 0)

buf[1] = 0x01; /* Left */

/* Set transfer length and trigger IN transfer */

USBD_SET_PAYLOAD_LEN(EP2, 3);

}

}

In the function of HID_ClassRequest(), PC will issue a SET_REPORT request within HID

class-specific requests to device when user keys in Caps Lock. In the meanwhile, device can

receive the new state data of key input stored in Set_Report.

void HID_ClassRequest(void)

{

 uint8_t buf[8];

 USBD_GetSetupPacket(buf);

 if (buf[0] & 0x80) /* request data transfer direction */

 {

// Device to host

 switch (buf[1])

July.01, 2019 Page 9 of 17 Rev 1.00

NUC122 Series

 {

...

 }

 }

 else

 {

// Host to device

 switch (buf[1])

 {

 case SET_REPORT:

 {

 if (buf[3] == 2)

 {

/* Request Type = Output */

 USBD_SET_DATA1(EP1);

 USBD_SET_PAYLOAD_LEN(EP1, buf[6]);

 USBD_PrepareCtrlOut((uint8_t *)&SetReport, buf[6]);

/* Status stage */

 USBD_PrepareCtrlIn(0, 0);

 }

 break;

 }

...

 case SET_PROTOCOL:

 {

 USBD_SET_DATA1(EP0);

 USBD_SET_PAYLOAD_LEN(EP0, 0);

 break;

 }

 default:

 {

 /* Setup error, stall the device */

 USBD_SetStall(EP0);

 USBD_SetStall(EP1);

 break;

 }

 }

 }

}

July.01, 2019 Page 10 of 17 Rev 1.00

NUC122 Series

2.1.3 descriptor.c

HID_MouseReportDescriptor array includes the HID Report Descriptor for mouse function. It

defines the data format in Table 2 and contains 3 buttons, X-axis, and Y-axis.

const uint8_t HID_MouseReportDescriptor[] =

{

0x05, 0x01, /* Usage Page(Generic Desktop Controls) */

0x09, 0x02, /* Usage(Mouse) */

0xA1, 0x01, /* Collection(Application) */

0x09, 0x01, /* Usage(Pointer) */

0xA1, 0x00, /* Collection(Physical) */

0x05, 0x09, /* Usage Page(Button) */

0x19, 0x01, /* Usage Minimum(0x1) */

0x29, 0x03, /* Usage Maximum(0x3) */

0x15, 0x00, /* Logical Minimum(0x0) */

0x25, 0x01, /* Logical Maximum(0x1) */

0x95, 0x03, /* Report Count(0x3) */

0x75, 0x01, /* Report Size(0x1) */

0x81, 0x02, /* Input(3 button bit) */

0x95, 0x01, /* Report Count(0x1) */

0x75, 0x05, /* Report Size(0x5) */

0x81, 0x01, /* Input(5 bit padding) */

0x05, 0x01, /* Usage Page(Generic Desktop Controls) */

0x09, 0x30, /* Usage(X) */

0x09, 0x31, /* Usage(Y) */

0x15, 0x81, /* Logical Minimum(0x81)(-127) */

0x25, 0x7F, /* Logical Maximum(0x7F)(127) */

0x75, 0x08, /* Report Size(0x8) */

0x95, 0x02, /* Report Count(0x2) */

0x81, 0x06, /* Input(1 byte) */

0xC0, /* End Collection */

0xC0, /* End Collection */

};

July.01, 2019 Page 11 of 17 Rev 1.00

NUC122 Series

2.2 Configuration Descriptor for 2 Interfaces Composite Device

USB host requests configuration descriptor for device enumeration. gu8ConfigDescriptor is

the configuration descriptor which contains description of 2 interfaces. Field “bNumInterfaces”

be set as 2 to inform that there are 2 interfaces in the composite device. 2 sets of interface

descriptor, HID descriptor and endpoint descriptor are listed sequentially in following.

/*!<USB Configure Descriptor */

const uint8_t gu8ConfigDescriptor[] =

{

 LEN_CONFIG, /* bLength */

 DESC_CONFIG, /* bDescriptorType */

LEN_CONFIG_AND_SUBORDINATE & 0x00FF,/* wTotalLength */

 ((LEN_CONFIG_AND_SUBORDINATE & 0xFF00) >> 8),

 0x02, /* bNumInterfaces */

 0x01, /* bConfigurationValue */

 0x00, /* iConfiguration */

 0x80 | (USBD_SELF_POWERED << 6) | (USBD_REMOTE_WAKEUP << 5),/* bmAttributes */

 USBD_MAX_POWER, /* MaxPower */

/* HID Interface Descriptor*/

 LEN_INTERFACE, /* bLength */

 DESC_INTERFACE, /* bDescriptorType */

 0x00, /* bInterfaceNumber */

 0x00, /* bAlternateSetting */

 0x01, /* bNumEndpoints */

 0x03, /* bInterfaceClass */

 0x01, /* bInterfaceSubClass */

 HID_MOUSE, /* bInterfaceProtocol */

 0x00, /* iInterface */

/* HID Descriptor */

 LEN_HID, /* bLength */

 DESC_HID, /* bDescriptorType */

 0x10, 0x01, /* bcdHID */

 0x00, /* bCountryCode */

 0x01, /* bNumDescriptors*/

 DESC_HID_RPT, /* bDescriptorType. */

 /* Total length of report descriptor. */

HID_MOUSE_REPORT_DESCRIPTOR_SIZE& 0x00FF,

 (HID_MOUSE_REPORT_DESCRIPTOR_SIZE& 0xFF00) >> 8),

July.01, 2019 Page 12 of 17 Rev 1.00

NUC122 Series

 /* EP Descriptor: interrupt in. */

 LEN_ENDPOINT, /* bLength */

 DESC_ENDPOINT, /* bDescriptorType */

 (INT_IN_EP_NUM_MS | EP_INPUT),/* bEndpointAddress */

 EP_INT, /* bmAttributes */

EP2_MAX_PKT_SIZE & 0x00FF,/* wMaxPacketSize */

 ((EP2_MAX_PKT_SIZE & 0xFF00) >> 8),

 HID_DEFAULT_INT_IN_INTERVAL, /* bInterval */

 /* HID Interface Descriptor */

 LEN_INTERFACE, /* bLength */

 DESC_INTERFACE, /* bDescriptorType */

 0x01, /* bInterfaceNumber */

 0x00, /* bAlternateSetting */

 0x01, /* bNumEndpoints */

 0x03, /* bInterfaceClass */

 0x01, /* bInterfaceSubClass */

 HID_KEYBOARD, /* bInterfaceProtocol */

 0x00, /* iInterface */

/* HID Descriptor */

 LEN_HID, /* bLength */

 DESC_HID, /* bDescriptorType */

 0x10, 0x01, /* bcdHID */

 0x00, /* bCountryCode*/

 0x01, /* bNumDescriptors*/

 DESC_HID_RPT, /* bDescriptorType */

/* Total length of report descriptor. */

HID_KEYBOARD_REPORT_DESCRIPTOR_SIZE& 0x00FF,

 ((HID_KEYBOARD_REPORT_DESCRIPTOR_SIZE& 0xFF00) >> 8),

/* EP Descriptor: interrupt in. */

 LEN_ENDPOINT, /* bLength */

 DESC_ENDPOINT, /* bDescriptorType */

 (INT_IN_EP_NUM_KB | EP_INPUT), /* bEndpointAddress */

 EP_INT, /* bmAttributes */

/* wMaxPacketSize */

 EP3_MAX_PKT_SIZE & 0x00FF,

 ((EP3_MAX_PKT_SIZE & 0xFF00) >> 8),

 HID_DEFAULT_INT_IN_INTERVAL, /* bInterval */

};

July.01, 2019 Page 13 of 17 Rev 1.00

NUC122 Series

3 Software and Hardware Environment

 Software Environment

 BSP version

 NUC122 Series BSP CMSIS v3.00.003

 IDE version

 Keil uVersion5.26

 Hardware Environment

 Circuit components

 NuTiny-EVB-122-LQFP64 V2.0

 USB mini USB cable

 Diagram

PD.1
PD.2
PD.3
PD.4
PD.5

←

←

←

←

←

Button (Mouse)
Button (Keyboard)
Button (Media key)
Button (Media key)
LED (Caps Lock)

USB ↔ PC(USB Host)

NUC122SD2AN

July.01, 2019 Page 14 of 17 Rev 1.00

NUC122 Series

4 Directory Information

 EC_NUC122_USBD_HID_KB_MS_MMKey_LEDCtrl_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

July.01, 2019 Page 15 of 17 Rev 1.00

NUC122 Series

5 How to Execute Example Code

1. This project supports Keil uVersion 5.26 or above.

2. Browsing into sample code folder by Directory Information (section 4) and double click

USBD_HID_KB_MS_MMKey_LEDCtrl.uvproj.

3. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

4. Enter debug mode

a. Run

July.01, 2019 Page 16 of 17 Rev 1.00

NUC122 Series

6 Revision History

Date Revision Description

July.01, 2019 1.00 1. Initially issued.

July.01, 2019 Page 17 of 17 Rev 1.00

NUC122 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

